Supplementary Online Content

eMethods 1. Global Burden of Disease overview

eMethods 2. Outcomes estimations

eMethods 3. Fatal cause-specific estimation process

eMethods 4. Nonfatal modeling methods

eMethods 5. Risk factor cause-specific estimation process

eTable 1. Disability-adjusted life-years (DALYs) and percentage change of DALYs for all cardiovascular causes by US state, total number and age-standardized rate for 1990, 2006, and 2016 for both sexes

eTable 2. Age-standardized heart failure prevalence per 100 000 persons for 2016

eFigure 1. US State rankings for age-standardized cardiovascular disease disability-adjusted life-year rates per 100 000 persons for both sexes combined in 2016

eFigure 2. Proportion of cardiovascular disease disability-adjusted life-years due to years lived with disability in 2016

eFigure 3. Leading level 2 cardiovascular risk factors for both sexes for Minnesota and Mississippi

eFigure 4. US State drivers of change in cardiovascular disease from 1990 to 2016

eFigure 5. Age-standardized percentage change in disability-adjusted life-year rate between 2010 and 2016 for all cardiovascular diseases

This supplementary material has been provided by the authors to give readers additional information about their work.
eMethods 1. Global Burden of Disease Overview

a. **GATHER statement**
This study is in compliance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) recommendations. The GBD 2016 capstone papers and their respective supplementary documents contain the general methods, data sources, model selection information, performance and limitation information for the GBD 2016 analyses including detailed GATHER documentation\(^1,2,3\). Appendix Table 1 contains GATHER compliance information for this publication.

b. **GBD Cause List**
The GBD Cause List is organized into six levels, consisting of a hierarchy that is mutually exclusive and collectively exhaustive. Details on the overall GBD Cause list have been documented elsewhere\(^1,2\). Appendix Table 2 contains the cause and sequelae list for Cardiovascular Diseases.

c. **Socio-Demographic Index (SDI)**
The Socio-demographic Index (SDI) is a composite indicator of development status constructed for GBD 2015 whose components are strongly correlated with health outcomes. SDI was calculated using the Human Development Index (HDI) methodology, wherein an index value was determined for each of the covariate inputs (log LDI, mean educational attainment over age 15, and TFR). Detailed methodology and analysis information for SDI have been described elsewhere\(^1,2\).

d. **Data Sources**
A complete list of sources used in the GBD 2016 analyses is available from the GBD 2016 Data Input Sources Tool (http://ghdx.healthdata.org/gbd-2016/data-input-sources).
eMethods 2. Outcomes estimations

Hospital and Claims Data
Hospital data plays a key role in nonfatal estimation for many CVD causes. GBD 2016 used both inpatient and outpatient administrative claims data. Detailed methods for claims data analysis from the United States were described previously. Briefly, aggregate data was derived from claims information in the Truvan Marketscan database of US private and public health insurance and were incorporated for the years of 2000, 2010, and 2012. Populations covered in each year were 3.3 million, 40.4 million and 40.8 million respectively. All ICD-9 four- or five-digit-coded diagnoses were mapped to GBD Causes. GBD conditions were categorized as “long-term” or “short-term” depending on cause duration. In a given year, for each individual in the claims data, a long-term case was defined as any mention in any diagnostic field associated with any claim, including inpatient and outpatient encounters. A short-term case was defined the same way, but assumed that claims within a condition-specific duration were the same case. A correction factor was applied to account for bias in health service encounter data over time, with the assumption that data from 2012 was most representative of the entire population.
eMethods 3. Fatal cause-specific estimation process

Fatal estimates for cardiovascular diseases were generated using CODEm. The CODEm methods approach has been described elsewhere\(^1\). A list of covariates used in CODEm modeling for each CVD cause can be found in Appendix Table 3a.

ICD8, 9, and 10 codes were mapped to GBD causes. Nonspecific or intermediate causes of death inappropriately assigned as underlying causes of death were redistributed to appropriate underlying causes using an algorithm developed for the GBD study. After identifying nonspecific or intermediate codes (for example generalized atherosclerosis or left-sided heart failure), a regression model was used to reassign these codes to biologically plausible targets. All-cause, all-cardiovascular, and cause-specific mortality was estimated using the Cause of Death Ensemble Model (CODEm) which produces cause-specific smoothed trends over time by age, sex, and state. Atrial fibrillation mortality was estimated with a separate natural history model described below. The CODCorrect algorithm was applied to ensure that cause-specific, cardiovascular, and all-cause deaths were consistent. Years of life lost (YLLs) were computed by multiplying the number of deaths from each cause in each age group by a global reference life expectancy at the average of age of death among those who died in the age group.
eMethods 4. Nonfatal modeling methods

Nonfatal estimates for cardiovascular diseases were modeled using the DisMod-MR 2.1 platform. Morbidity modeling methods have been documented elsewhere. A list of covariates used in DisMod modeling for each CVD cause can be found in Appendix Table 3b. Appendix Table 4 includes a list of International Classification of Diseases (ICD) codes used in the extraction of hospital and claims data, mapped to specific cardiovascular diseases.
eMethods 5. Risk factor cause-specific estimation process

A set of behavioral, environmental and occupational, and metabolic risks that contribute to health outcomes were evaluated in GBD 2016. The Comparative Risk Assessment framework included 84 behavioral, environmental and occupational, and metabolic risks or risk clusters. Risk-outcome pairs were defined using the World Cancer Research Fund-defined criteria for convincing or probable evidence. Relative risk estimates were derived from published and unpublished data, including randomized trials and pooling of longitudinal cohort studies. Both Bayesian meta-regression and Gaussian spatiotemporal process regression models were used to produce consistent estimates of risk exposure.

Risks were organized in four hierarchical levels, each level being evaluated to determine whether risk combinations were additive, multiplicative, or shared common pathways for intervention. Through this method, we are able to quantify the proportion of risk attributable burden shared by risks or combination of risks. Additionally, this methodology allows for the measurement of potential overlaps between behavioral, environmental and occupational, and metabolic risks. The full risk factor estimation and evaluation methodology has been described elsewhere3.
eReferences.

Appendix Table 1. GATHER checklist of information that should be included in reports of global health estimates, with description of compliance and location of information for “The burden of cardiovascular diseases among US states, 1990–2016”.

<table>
<thead>
<tr>
<th>#</th>
<th>GATHER checklist item</th>
<th>Description of compliance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Objectives and funding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Define the indicators, populations, and time periods for which estimates were made.</td>
<td>Narrative provided in paper and appendix describing indicators, definitions, and populations.</td>
<td>Manuscript; Methods Appendix, Section 1. GBD Overview</td>
</tr>
<tr>
<td>2</td>
<td>List the funding sources for the work.</td>
<td>Funding sources listed at end of paper.</td>
<td>Funding Sources</td>
</tr>
<tr>
<td></td>
<td>Data Inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Describe how the data were identified and how the data were accessed.</td>
<td>Narrative description of data seeking methodology provided in previously published appendices.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Specify the inclusion and exclusion criteria. Identify all ad-hoc exclusions.</td>
<td>Narrative about inclusion and exclusion criteria by data type provided in previously published appendices.</td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th></th>
<th>Provide information on all included data sources and their main characteristics. For each data source used, report reference information or contact name/institution, population represented, data collection method, year(s) of data collection, sex and age range, diagnostic criteria or measurement method, and sample size, as relevant.</th>
<th>Interactive, online data source tool that provides metadata for data sources by component, geography, cause, risk, or impairment has been developed.</th>
<th>Online data tools: http://ghdx.healthdata.org/gbd-2016/data-input-sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 6 | Identify and describe any categories of input data that have potentially important biases (e.g., based on characteristics listed in item 5). | Summary of known biases by cause included in methodological approaches sections of previously published appendices. | 1) GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017: 390;1151–210.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Describe and give sources for any other data inputs.</td>
<td>Included in list of all data sources provided on online data source tool.</td>
</tr>
<tr>
<td>8</td>
<td>Provide all data inputs in a file format from which data can be efficiently extracted (e.g., a spreadsheet as opposed to a PDF), including all relevant meta-data listed in item 5. For any data inputs that cannot be shared due to ethical or legal reasons, such as third-party ownership, provide a contact name or the name of the institution that retains the right to the data.</td>
<td>Downloads of input data will be available through online tools, including data visualization tools and data query tools. Input data not available in tools will be made available upon request.</td>
</tr>
</tbody>
</table>

Data analysis

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
Describe how candidate models were evaluated and how the final model(s) were selected.

Provided in the methodological write-ups of previously published appendices.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>State how analytic or statistical source code used to generate estimates can be accessed.</td>
<td>Access statement provided.</td>
</tr>
<tr>
<td>15</td>
<td>Provide published estimates in a file format from which data can be efficiently extracted.</td>
<td>GBD 2016 results are available through online data visualization tools, the Global Health Data Exchange, and the online data query tool (these tools are already available for GBD 2013 results).</td>
</tr>
<tr>
<td>16</td>
<td>Report a quantitative measure of the uncertainty of the estimates (e.g. uncertainty intervals).</td>
<td>Uncertainty intervals are provided with all results.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Appendix Table 2. GBD 2016 Cause and Sequela Hierarchy for Cardiovascular Diseases

<table>
<thead>
<tr>
<th>Causes and sequelae</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular diseases</td>
<td>2</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to rheumatic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to rheumatic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Rheumatic heart disease, without heart failure</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to rheumatic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>3</td>
</tr>
<tr>
<td>Acute myocardial infarction 3 to 28 days</td>
<td>5</td>
</tr>
<tr>
<td>Acute myocardial infarction first 2 days</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic angina due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic ischemic heart disease following myocardial infarction</td>
<td>5</td>
</tr>
<tr>
<td>Mild angina due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Moderate angina due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Severe angina due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to ischemic heart disease</td>
<td>5</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>3</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>4</td>
</tr>
<tr>
<td>Acute ischemic stroke severity level 1</td>
<td>5</td>
</tr>
<tr>
<td>Acute ischemic stroke severity level 2</td>
<td>5</td>
</tr>
<tr>
<td>Acute ischemic stroke severity level 3</td>
<td>5</td>
</tr>
<tr>
<td>Acute ischemic stroke severity level 4</td>
<td>5</td>
</tr>
<tr>
<td>Acute ischemic stroke severity level 5</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic chronic ischemic stroke</td>
<td>5</td>
</tr>
<tr>
<td>Chronic ischemic stroke severity level 1</td>
<td>5</td>
</tr>
<tr>
<td>Chronic ischemic stroke severity level 2</td>
<td>5</td>
</tr>
<tr>
<td>Chronic ischemic stroke severity level 3</td>
<td>5</td>
</tr>
<tr>
<td>Condition</td>
<td>Severity Level</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Chronic ischemic stroke</td>
<td>4</td>
</tr>
<tr>
<td>Chronic ischemic stroke</td>
<td>5</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>4</td>
</tr>
<tr>
<td>Acute hemorrhagic stroke</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic chronic hemorrhagic stroke</td>
<td>5</td>
</tr>
<tr>
<td>Chronic hemorrhagic stroke</td>
<td>5</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to hypertension</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to hypertension</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to hypertension</td>
<td>5</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>4</td>
</tr>
<tr>
<td>Acute myocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to myocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to myocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to myocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Alcoholic cardiomyopathy</td>
<td>4</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to alcoholic cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to alcoholic cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to alcoholic cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Other cardiomyopathy</td>
<td>4</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to other cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Condition</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Moderate heart failure due to other cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to other cardiomyopathy</td>
<td>5</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic atrial fibrillation and flutter</td>
<td>5</td>
</tr>
<tr>
<td>Symptomatic atrial fibrillation and flutter</td>
<td>5</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>3</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic peripheral vascular disease</td>
<td>5</td>
</tr>
<tr>
<td>Symptomatic claudication due to peripheral vascular disease</td>
<td>5</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to endocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Moderate endocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to endocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Severe endocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to endocarditis</td>
<td>5</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>3</td>
</tr>
<tr>
<td>Asymptomatic and mild heart failure due to other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Asymptomatic other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Mild other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Moderate heart failure due to other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Moderate other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Severe heart failure due to other cardiovascular diseases</td>
<td>5</td>
</tr>
<tr>
<td>Severe other cardiovascular diseases</td>
<td>5</td>
</tr>
</tbody>
</table>
Appendix Table 3a. GBD 2016 CODem model covariates by CVD Cause

<table>
<thead>
<tr>
<th>Cause Name</th>
<th>Covariate</th>
<th>Transformation</th>
<th>Level</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular diseases</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Trans fatty acid</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Fasting plasma glucose (mmol/L)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Outdoor pollution (PM$_{2.5}$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Indoor air pollution (all fuel types)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>PUFAs adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>SEV</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Improved water (proportion)</td>
<td>None</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Malnutrition</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Sanitation (proportion with access)</td>
<td>None</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>LDI</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>SDI</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Education (years per capita)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Trans fatty acid</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Fasting plasma glucose</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Outdoor pollution (PM$_{2.5}$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Indoor air pollution</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Disease Type</td>
<td>Exposure Variable</td>
<td>Scale</td>
<td>Transformation</td>
<td>Exponent</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>-------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Trans fatty acid</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Fasting plasma glucose</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Outdoor pollution (PM$_{2.5}$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Indoor air pollution</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Trans fatty acid</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Fasting plasma glucose</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Outdoor pollution (PM$_{2.5}$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Indoor air pollution</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Disease</td>
<td>Exposure Variable</td>
<td>Function</td>
<td>Coefficient 1</td>
<td>Coefficient 2</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Lag distributed income per capita (I$)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Trans fatty acid</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Fasting plasma glucose</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Outdoor pollution (PM$_{2.5}$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Indoor air pollution</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Lag distributed income per capita (I$)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Socio-demographic index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Lag distributed income per capita (I$)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>Socio-demographic index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Summary exposure variable, CMP</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Smoking prevalence</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Alcohol (litres per capita)</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Healthcare access and quality index</td>
<td>none</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Lag distributed income per capita (I$)</td>
<td>log</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Condition</td>
<td>Summary variable</td>
<td>Socio-demographic Index</td>
<td>Exposures</td>
<td>Lag</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>Alcoholic Cardiomyopathy</td>
<td>Summary exposure variable, CMP</td>
<td>none</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Summary exposure variable, CMP</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Systolic blood pressure (mm Hg)</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Healthcare access and quality index</td>
<td>none</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Lag distributed income per capita (I$)</td>
<td>log</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Summary exposure variable, CMP</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Summary exposure variable, CMP</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Systolic blood pressure (mmHg)</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Smoking prevalence</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Body mass index ($/m^2$)</td>
<td>none</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Healthcare access and quality index</td>
<td>none</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Other Cardiomyopathy</td>
<td>Lag distributed income per capita (I$)</td>
<td>log</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Fasting plasma glucose</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Outdoor pollution ($/m^2$)</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Indoor air pollution</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Healthcare Access and Quality Index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Lag distributed income per capita (I$)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Cumulative cigarettes (10 yrs)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Trans fatty acid (percent)</td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>Lag distributed income per capita (I$)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Disease</td>
<td>Summary exposure variable</td>
<td>Log</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mean body mass index (kg/m²)</td>
<td>None</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>2</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Improved water (proportion)</td>
<td>None</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Sanitation (proportion with access)</td>
<td>None</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Healthcare access and quality index</td>
<td>None</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Summary exposure variable</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cholesterol (total, mean per capita)</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Smoking prevalence</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trans fatty acid (percent)</td>
<td>None</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mean BMI</td>
<td>None</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elevation over 1500m (proportion)</td>
<td>None</td>
<td>2</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/L)</td>
<td>None</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Indoor air pollution (all fuel types)</td>
<td>None</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Outdoor air pollution (PM_{2.5})</td>
<td>None</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Other cardiovascular and circulatory diseases</th>
<th>Healthcare access and quality index</th>
<th>None</th>
<th>2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Lag distributed income per capita (IS)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Socio-demographic Index</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Omega-3 (kcal/capita, adjusted)</td>
<td>Log</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Fruits (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Vegetables (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Nuts and seeds (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Whole grains (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Pulses/legumes (kcal/capita, adjusted)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>PUFA adjusted (percent)</td>
<td>None</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>Alcohol (litres per capita)</td>
<td>None</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix Table 3b. GBD 2016 Dismod model covariates by CVD Cause

<table>
<thead>
<tr>
<th>Cause</th>
<th>Covariate Name</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Myocardial Infarction</td>
<td>Diagnostic blood sample (troponin)</td>
<td>Incidence</td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>First ever MI</td>
<td>Incidence</td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>Log-transformed age-standardized SEV scalar: IHD</td>
<td>Incidence</td>
</tr>
<tr>
<td>Acute Myocardial Infarction</td>
<td>Non-fatal MI</td>
<td>Incidence</td>
</tr>
<tr>
<td>Acute Myocarditis</td>
<td>All MarketScan, year 2000</td>
<td>Incidence</td>
</tr>
<tr>
<td>Acute Myocarditis</td>
<td>All MarketScan, year 2010</td>
<td>Incidence</td>
</tr>
<tr>
<td>Acute Myocarditis</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>Acute Myocarditis</td>
<td>Log-transformed age-standardized SEV scalar: CMP</td>
<td>Incidence</td>
</tr>
<tr>
<td>Angina</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>Angina</td>
<td>Log-transformed age-standardized SEV scalar: IHD</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, female, 50 to 64</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, female, 65 plus</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, female, less than 50</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, male, 50 to 64</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, male, 65 plus</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Angina</td>
<td>RAQ, male, less than 50</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>All MarketScan, year 2000</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>All MarketScan, year 2010</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>Hospital data</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>Log-transformed age-standardized SEV scalar: A Fib</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Chronic hemorrhagic stroke</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>Chronic hemorrhagic stroke</td>
<td>Log-transformed SEV scalar: Hem Stroke</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Chronic ischemic stroke</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>Chronic ischemic stroke</td>
<td>Log-transformed SEV scalar: Isch Stroke</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Hospital data</td>
<td>Incidence</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Inpatient-only Marketscan, year 2000</td>
<td>Incidence</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Inpatient-only Marketscan, year 2010</td>
<td>Incidence</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>LDI (I$per capita)</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>Log-transformed age-standardized SEV scalar: endocarditis</td>
<td>Incidence</td>
</tr>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>Any stroke</td>
<td>Incidence</td>
</tr>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>Any stroke</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>First-ever acute stroke, ischemic or hemorrhagic</td>
<td>Incidence</td>
</tr>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>First-ever acute stroke, ischemic or hemorrhagic</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>Hospital data</td>
<td>Incidence</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>Condition</th>
<th>Measure</th>
<th>Summary Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>First ever acute hemorrhagic stroke</td>
<td>Log-transformed age-standardized SEV scalar: hemorrhagic stroke</td>
<td>Incidence</td>
</tr>
<tr>
<td>First ever acute ischemic stroke</td>
<td>Any stroke</td>
<td>Incidence</td>
</tr>
<tr>
<td>First ever acute ischemic stroke</td>
<td>First-ever acute stroke, ischemic or hemorrhagic</td>
<td>Incidence</td>
</tr>
<tr>
<td>First ever acute ischemic stroke</td>
<td>Hospital data</td>
<td>Incidence</td>
</tr>
<tr>
<td>First ever acute ischemic stroke</td>
<td>Log-transformed age-standardized SEV scalar: ischemic stroke</td>
<td>Incidence</td>
</tr>
<tr>
<td>HF Envelope</td>
<td>All MarketScan, year 2000</td>
<td>Prevalence</td>
</tr>
<tr>
<td>HF Envelope</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>HF Envelope</td>
<td>Log-transformed age-standardised SEV scalar: CVD</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Peripheral Arterial Disease</td>
<td>Healthcare access and quality index</td>
<td>Proportion</td>
</tr>
<tr>
<td>Peripheral Arterial Disease</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>Peripheral Arterial Disease</td>
<td>Log-transformed age-standardized SEV scalar: PVD</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Rhuematic Heart Disease - Endemic</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>Rhuematic Heart Disease - Endemic</td>
<td>Log-transformed age-standardized SEV scalar: RHD</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Rhuematic Heart Disease - Nonendemic</td>
<td>All Marketscan, year 2000</td>
<td>Study-level</td>
</tr>
<tr>
<td>Rhuematic Heart Disease - Nonendemic</td>
<td>All Marketscan, year 2010</td>
<td>Study-level’</td>
</tr>
<tr>
<td>Rhuematic Heart Disease - Nonendemic</td>
<td>LDI (I$ per capita)</td>
<td>Excess mortality rate</td>
</tr>
<tr>
<td>Rhuematic Heart Disease - Nonendemic</td>
<td>Log-transformed age-standardized SEV scalar: RHD</td>
<td>Prevalence</td>
</tr>
</tbody>
</table>
Appendix Table 4: List of International Classification of Diseases (ICD) codes mapped to the Global Burden of Disease cause list for Cardiovascular Diseases

<table>
<thead>
<tr>
<th>Cause</th>
<th>ICD10</th>
<th>ICD10 Used in Hospital/Claims Analyses</th>
<th>ICD9</th>
<th>ICD9 Used in Hospital/Claims Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic heart disease</td>
<td>I01-I01.9, I02.0, I05-I05.9</td>
<td>I01-I09.9</td>
<td>391-391.9, 392.0, 393-398.99</td>
<td>391-398.99</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>I20-I21.6, I21.9-I25.9, Z82.4-Z82.49</td>
<td>I20-I25.9</td>
<td>410-414.9, V17.3</td>
<td>410-414.9</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>G45-G46.8, 160-164, 164.1, 165-169.998, Z82.3</td>
<td>I63-I63.9, I67.2-167.848, 169.3-169.4</td>
<td>433-435.9, 437.0-437.2, 437.4-437.9</td>
<td>434-434.9, 437.0-437.2, 437.4-437.9</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>G45-G46.8, 163-163.9, 165-166.9, 167.2-167.848, 169.3-169.4</td>
<td>I63-I63.9, I67.0-169.298</td>
<td>430-433.9, 437.3</td>
<td>430-432.9</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>I60-I62.9, I67.0-167.1, 169.0-169.298</td>
<td>I60-I62.9, I67.0-167.1, 169.0-169.298</td>
<td>430-432.9, 437.3</td>
<td>430-432.9</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>I11-I11.2, I11.9</td>
<td>I11-I11.2, I11.9</td>
<td>402-402.91</td>
<td>402-402.91</td>
</tr>
<tr>
<td>Cardiomyopathy and myocarditis</td>
<td>B33.2-B33.20, B33.22-B33.24, D86.85, I40-141.8, 142-143.8, 151.4-151.6</td>
<td>B33.2-B33.20, B33.22-B33.24, D86.85, I40-141.8, 151.4-151.6</td>
<td>074.2, 074.23, 422-422.99, 425-425.5, 425.7-425.9, 429.0-429.1</td>
<td>074.2, 074.23, 422-422.99, 429.0-429.1</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>B33.2-B33.20, B33.22-B33.24, D86.85, I40-141.8, 151.4-151.6</td>
<td>B33.2-B33.20, B33.22-B33.24, D86.85, I40-141.8, 151.4-151.6</td>
<td>074.2, 074.23, 422-422.99, 429.0-429.1</td>
<td>074.2, 074.23, 422-422.99, 429.0-429.1</td>
</tr>
<tr>
<td>Alcoholic cardiomyopathy</td>
<td>I42.6</td>
<td>I42.6</td>
<td>425.0-425.4, 425.7-425.9</td>
<td>425.0-425.4, 425.7-425.9</td>
</tr>
<tr>
<td>Other cardiomyopathy</td>
<td>I42.0-I42.5, I42.7-143.8</td>
<td>I48-148.92</td>
<td>427.3-427.32</td>
<td>427.3-427.32</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>I48-148.92</td>
<td>I48-148.92</td>
<td>440.2-440.39, 440.4-440.9, 443-443.9</td>
<td>440.2-440.39, 440.4-443.9</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>I70.2-I70.92, I73-173.9</td>
<td>I70.2-I73.9</td>
<td>440.2-440.9, 440.4-440.9, 443-443.9</td>
<td>440.2-440.9, 440.4-443.9</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>B33.21, I33-I33.9, I38-I38.0, I39-I39.9</td>
<td>B33.21, I33-I39.9</td>
<td>074.22, 421-421.9, 424, 424.4-424.99</td>
<td>074.22, 421-421.9, 424, 424.4-424.99</td>
</tr>
<tr>
<td>Other cardiovascular and circulatory diseases</td>
<td>I30-I32.8, I34-I37.9, I51-151.3, 151.7-152.8, I72-I72.9, 177-183.93, 186-189.0, I89.9, I95.0-195.1, I98, I98.8-199.9, K75.1</td>
<td>I30-I32.8, I34-I37.9, I51-151.3, 151.7-152.8, I72-I72.9, 177-183.93, 186-189.0, I89.9, I95.0-195.1, I98, I98.8-199.9, K75.1</td>
<td>074.21, 417-417.9, 420-420.99, 423-423.9, 424.0-424.3, 429, 429.2-429.9, 442-442.9, 447-454.9, 456, 456.3-457, 457.1, 457.8-458.1, 459-459.9</td>
<td>074.21, 417-417.9, 420-420.99, 423-423.9, 424.0-424.3, 429, 429.2-429.9, 442-442.9, 447-454.9, 456, 456.3-457, 457.1, 457.8-458.1, 459-459.9</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2012. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1991. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2010. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1992. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1988. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>
Atrial fibrillation and flutter

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2012. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2013</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2011-2012. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2013</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2001-2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 1995. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2011. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2012. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2013. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	Furberg CD, Psaty BM, Manolio TA, Gardin JM, Smith VE, Rautaharju PM. Prevalence of atrial fibrillation in elderly subjects (the Cardiovascular Health Study). Am J Cardiol. 1994; 74(3): 236-41
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2013. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2014
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	Upshaw CB. Reduced prevalence of atrial fibrillation in black patients compared with white patients attending an urban hospital: an electrocardiographic study. J Natl Med Assoc. 2002; 94(4): 204-8
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2009-2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2011
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 1999-2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Atrial fibrillation and flutter	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
Atrial fibrillation and flutter

<table>
<thead>
<tr>
<th>Study</th>
<th>Authors</th>
<th>Additional Information</th>
</tr>
</thead>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1991. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1984. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2010. Ann Arbor, United States: Truven Health Analytics
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1986. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1992. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1994. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1988. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2005-2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1985. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	Panel Study of Income Dynamics, 2007 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI, (2011)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 2008-2010
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1980. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1983. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1982. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Health Interview Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Health Interview Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Endocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Health Interview Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1991</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1986</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1986. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1985</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1985. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1984</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1984. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1983</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1983. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1982</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1982. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1979</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1977</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1977. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1975</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1975. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1972</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1972. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1971</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1971. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1968</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1968. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1967</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1967. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1966</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1966. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1965</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1965. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1964</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1964. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1963</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1963. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1962</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1962. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology*. Downloaded From: by a Non-Human Traffic (NHT) User on 12/05/2018
<table>
<thead>
<tr>
<th>Condition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1988-1992</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2000. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2010. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2012. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 2007-2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2012. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Nationwide Inpatient Sample 2013. Rockville, United States: Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research and Quality (AHRQ)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Hemorrhagic Stroke</th>
<th>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1981. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2014. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2015</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 2015. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2016</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1980. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1984. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2005-2006. Data and Information Sciences Center, University of Wisconsin-Madison [distributor]</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1997. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>Hemorrhagic Stroke</th>
<th>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1998. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1985. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>Health and Retirement Study, (Biennial 2000) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>Panel Study of Income Dynamics, 2005 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Child Health and Human Development. Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2009-2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>Health and Retirement Study, (Biennial 2006) public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2014)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1993-1997</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1998-2002</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1983. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 2008-2010</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 2008-2010</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1989. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 2008-2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2013-2014. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>Health and Retirement Study, (Biennial 2010) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2014)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Stroke</th>
<th>Source</th>
</tr>
</thead>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>Disease</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2012. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2013</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Panel Study of Income Dynamics, 2007 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2012. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2011-2012. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2013</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2009-2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2011</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2000. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health Interview Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1981. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1994. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1989. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>Panel Study of Income Dynamics, 2005 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI, (2011)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>Year</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>United States National Hospital Discharge Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1990</td>
<td>United States National Hospital Discharge Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1987</td>
<td>United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1986</td>
<td>United States National Hospital Discharge Survey 1986. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1985</td>
<td>United States National Hospital Discharge Survey 1985. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1984</td>
<td>United States National Hospital Discharge Survey 1984. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1983</td>
<td>United States National Hospital Discharge Survey 1983. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1982</td>
<td>United States National Hospital Discharge Survey 1982. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1979</td>
<td>United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1978</td>
<td>United States National Hospital Discharge Survey 1978. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1977</td>
<td>United States National Hospital Discharge Survey 1977. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1975</td>
<td>United States National Hospital Discharge Survey 1975. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1972</td>
<td>United States National Hospital Discharge Survey 1972. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>1971</td>
<td>United States National Hospital Discharge Survey 1971. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
Ischemic heart disease	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau, United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic heart disease	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau, United States National Health Interview Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic heart disease	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau, United States National Hospital Discharge Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic heart disease	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau, United States National Hospital Discharge Survey 1986. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic heart disease	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau, United States National Hospital Discharge Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic heart disease	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau, United States National Hospital Discharge Survey 1985. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic heart disease	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau, United States National Hospital Discharge Survey 1980. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>Disease</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1991. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1991. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1984. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2013. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2019. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1996. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1987. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1984. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2009-2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2011
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Hospital Discharge Survey 1998-1992
Ischemic stroke	Health and Retirement Study, (Biennial 2012) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, 2015
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	Health and Retirement Study, (Biennial 1998) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, 2014
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1992. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 1999-2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2011. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Health Interview Survey 2015. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Health Interview Survey 2014. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1985. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Ischemic stroke	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC). United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2013. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2014</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Health and Retirement Study. (Biennial 2010) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2014)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Truven Health Analytics. United States MarketScan Commercial Claims and Encounters Database 2010. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1998. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1980. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2008-2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Health and Retirement Study. (Biennial 2000) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Health and Retirement Study. (Biennial 2004) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2013)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Health and Retirement Study. (Biennial 2006) public use dataset. Produced and distributed by the University of Michigan with funding from the National Institute on Aging (grant number NIA U01AG009740). Ann Arbor, MI, (2014)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Panel Study of Income Dynamics, 2007 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>Panel Study of Income Dynamics, 2005 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Condition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2001. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>United States National Health Interview Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1986. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2005. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1995. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1998. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1984. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1985. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)
Myocarditis	National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 1999-2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Condition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1991. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States National Health and Nutrition Examination Survey 2009-2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2000. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2010. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2012. Ann Arbor, United States: Truven Health Analytics</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic heart disease</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2012. Ann Arbor, United States: Truven Health Analytics</td>
<td></td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Truven Health Analytics. United States MarketScan Claims and Medicare Data - 2010. Ann Arbor, United States: Truven Health Analytics</td>
<td></td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 1999. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Hospital Discharge Survey 1993. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>Rheumatic heart disease</th>
<th>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2012. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1994. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1986. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2009. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2015. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2016. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Panel Study of Income Dynamics, 2005 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 1991. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1988. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2007. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1995. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1979. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2006. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2004. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2003. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2010. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2000. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>Rheumatic heart disease</th>
<th>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 2002. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Health Interview Survey 2013. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), 2014</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Hospital Discharge Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Panel Study of Income Dynamics, 2007 public use dataset. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI, (2011)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), US Census Bureau. United States National Health Interview Survey 2008. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1990. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1991. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), United States Census Bureau. United States National Hospital Discharge Survey 1992. Hyattsville, United States: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
eTable 1. Disability-adjusted life-years (DALYs) and percentage change of DALYs for all cardiovascular causes by US state, total number and age-standardized rate for 1990, 2006, and 2016 for both sexes

<table>
<thead>
<tr>
<th>Cause</th>
<th>Number of DALYS (95% UI)</th>
<th>Percentage change in DALYs (95% UI)</th>
<th>Age-standardized DALY rates per 100,000 persons (95% UI)</th>
<th>Percentage change in DALY rates (95% UI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol cardiomyopathy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>1,567 (1,098 to 1,985)</td>
<td>2,054 (1,717 to 3,050)</td>
<td>2,418 (1,917 to 3,636)</td>
<td>.56 (.17 to 1.48)</td>
</tr>
<tr>
<td>Alaska</td>
<td>193 (122 to 230)</td>
<td>281 (206 to 374)</td>
<td>370 (266 to 488)</td>
<td>.95 (.49 to 1.71)</td>
</tr>
<tr>
<td>Arizona</td>
<td>1,113 (893 to 1,420)</td>
<td>2,234 (1,835 to 2,827)</td>
<td>2,641 (2,118 to 4,230)</td>
<td>1.39 (.85 to 2.81)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>844 (702 to 1,128)</td>
<td>1,121 (925 to 1,747)</td>
<td>1,300 (1,009 to 2,241)</td>
<td>.54 (.18 to 1.3)</td>
</tr>
<tr>
<td>California</td>
<td>13,915 (6,351 to 18,037)</td>
<td>15,691 (9,658 to 18,450)</td>
<td>18,886 (11,218 to 23,783)</td>
<td>.42 (.04 to 1.52)</td>
</tr>
<tr>
<td>Colorado</td>
<td>944 (738 to 1,225)</td>
<td>1,483 (1,200 to 2,399)</td>
<td>1,933 (1,502 to 3,420)</td>
<td>1.05 (.58 to 2.06)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1,233 (861 to 1,464)</td>
<td>1,390 (1,052 to 1,738)</td>
<td>1,430 (1,124 to 2,072)</td>
<td>.18 (-.12 to .92)</td>
</tr>
<tr>
<td>Delaware</td>
<td>330 (185 to 401)</td>
<td>433 (295 to 510)</td>
<td>496 (366 to 598)</td>
<td>.54 (.2 to 1.24)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>612 (201 to 883)</td>
<td>441 (234 to 582)</td>
<td>428 (259 to 550)</td>
<td>-.25 (-.49 to .45)</td>
</tr>
<tr>
<td>State</td>
<td>Mean (95% CI)</td>
<td>95% CI of Estimate (95% CI)</td>
<td>Mean (95% CI)</td>
<td>95% CI of Estimate (95% CI)</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Florida</td>
<td>6,955 (3,459 to 8,650)</td>
<td>12,041 (7,937 to 14,778)</td>
<td>.78 (.37 to 1.72)</td>
<td>.23 (.03 to .45)</td>
</tr>
<tr>
<td>Georgia</td>
<td>2,331 (1,408 to 2,961)</td>
<td>6,067 (4,095 to 7,591)</td>
<td>1.67 (.7 to 3.15)</td>
<td>.26 (.02 to .55)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>615 (260 to 796)</td>
<td>885 (475 to 1,117)</td>
<td>.49 (.16 to 1.07)</td>
<td>.18 (-.01 to .37)</td>
</tr>
<tr>
<td>Idaho</td>
<td>279 (222 to 374)</td>
<td>553 (417 to 953)</td>
<td>.98 (.49 to 1.86)</td>
<td>.35 (.13 to .6)</td>
</tr>
<tr>
<td>Illinois</td>
<td>4,672 (2,574 to 5,780)</td>
<td>5,653 (4,476 to 7,559)</td>
<td>.26 (-.08 to 1.48)</td>
<td>.18 (0 to .43)</td>
</tr>
<tr>
<td>Indiana</td>
<td>2,329 (1,395 to 2,820)</td>
<td>2,985 (2,375 to 4,147)</td>
<td>.32 (-.03 to 1.2)</td>
<td>.06 (-.14 to .33)</td>
</tr>
<tr>
<td>Iowa</td>
<td>975 (730 to 1,161)</td>
<td>1,259 (975 to 2,023)</td>
<td>.3 (-.01 to 1.05)</td>
<td>.17 (-.01 to .37)</td>
</tr>
<tr>
<td>Kansas</td>
<td>902 (614 to 1,076)</td>
<td>1,225 (966 to 1,805)</td>
<td>.38 (.02 to 1.16)</td>
<td>.1 (-.1 to .34)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1,204 (963 to 1,570)</td>
<td>1,910 (1,487 to 3,180)</td>
<td>.59 (.21 to 1.44)</td>
<td>.14 (-.04 to .34)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>1,598 (1,053 to 1,980)</td>
<td>2,251 (1,821 to 3,373)</td>
<td>.43 (.08 to 1.13)</td>
<td>.3 (.12 to .51)</td>
</tr>
<tr>
<td>Maine</td>
<td>501 (327 to 590)</td>
<td>686 (519 to 917)</td>
<td>.39 (.08 to 1.14)</td>
<td>.2 (.02 to .4)</td>
</tr>
<tr>
<td>Maryland</td>
<td>2,063 (1,093 to 2,600)</td>
<td>3,250 (2,483 to 3,997)</td>
<td>.64 (.2 to 2.09)</td>
<td>.22 (.04 to .42)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>1,731 (1,394 to 2,501)</td>
<td>2,409 (1,839 to 4,341)</td>
<td>.4 (.05 to 1.5)</td>
<td>.15 (-.03 to .38)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>AHE (95% CI)</th>
<th>MHE (95% CI)</th>
<th>ACHE (95% CI)</th>
<th>PHE (95% CI)</th>
<th>LHE (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>3,556 (2,223 to 4,345)</td>
<td>5,287 (3,571 to 6,206)</td>
<td>5,589 (4,117 to 7,022)</td>
<td>.6 (.23 to 1.37)</td>
<td>.06 (-.13 to .31)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>1,184 (957 to 1,563)</td>
<td>1,684 (1,191 to 2,794)</td>
<td>2,144 (1,493 to 3,616)</td>
<td>.81 (.34 to 1.74)</td>
<td>.27 (.08 to .5)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>1,124 (694 to 1,366)</td>
<td>1,502 (1,245 to 2,056)</td>
<td>1,699 (1,342 to 2,415)</td>
<td>.55 (.14 to 1.45)</td>
<td>.13 (-.07 to .36)</td>
</tr>
<tr>
<td>Missouri</td>
<td>2,002 (1,346 to 2,394)</td>
<td>2,266 (1,910 to 3,191)</td>
<td>2,272 (1,783 to 3,780)</td>
<td>.16 (-.17 to 1.03)</td>
<td>0 (-.19 to .26)</td>
</tr>
<tr>
<td>Montana</td>
<td>258 (201 to 319)</td>
<td>313 (251 to 511)</td>
<td>379 (285 to 677)</td>
<td>.47 (-.09 to 1.38)</td>
<td>.21 (-.02 to .46)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>483 (397 to 629)</td>
<td>538 (435 to 903)</td>
<td>623 (482 to 1,071)</td>
<td>.29 (-.01 to 1.01)</td>
<td>.15 (-.02 to .34)</td>
</tr>
<tr>
<td>Nevada</td>
<td>518 (333 to 666)</td>
<td>1,175 (910 to 1,436)</td>
<td>1,779 (1,263 to 2,166)</td>
<td>2.5 (1.41 to 4.21)</td>
<td>.52 (.19 to .86)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>379 (291 to 475)</td>
<td>463 (383 to 701)</td>
<td>570 (455 to 891)</td>
<td>.51 (.16 to 1.25)</td>
<td>.23 (.05 to .43)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>4,058 (2,216 to 4,979)</td>
<td>4,786 (2,840 to 5,654)</td>
<td>4,450 (3,087 to 5,571)</td>
<td>.13 (-.14 to 1.03)</td>
<td>-.06 (-.24 to .17)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>526 (370 to 628)</td>
<td>792 (652 to 1,161)</td>
<td>877 (683 to 1,411)</td>
<td>.69 (.24 to 1.75)</td>
<td>.11 (-.1 to .37)</td>
</tr>
<tr>
<td>New York</td>
<td>6,511 (4,907 to 8,600)</td>
<td>6,689 (5,408 to 10,422)</td>
<td>7,080 (5,325 to 12,409)</td>
<td>1 (-.22 to 1.06)</td>
<td>.05 (-.14 to .28)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>3,256 (1,636 to 4,031)</td>
<td>4,743 (2,925 to 5,572)</td>
<td>5,895 (3,893 to 7,178)</td>
<td>.87 (.44 to 2.22)</td>
<td>.25 (.05 to .58)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>195 (154 to 266)</td>
<td>190 (152 to 328)</td>
<td>242 (182 to 421)</td>
<td>.24 (-.08 to .83)</td>
<td>.27 (.03 to .53)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>State</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>2,958</td>
<td>4,361</td>
<td>5,781</td>
<td>.99 (.38 to 1.68)</td>
<td>.33 (.11 to .58)</td>
<td>25 (18 to 37)</td>
<td>31 (26 to 43)</td>
<td>37 (29 to 48)</td>
<td>.51 (.07 to 1.03)</td>
<td>.21 (.01 to .43)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1,033 (843 to 1,359)</td>
<td>1,273 (1,018 to 2,149)</td>
<td>1,707 (1,304 to 2,996)</td>
<td>.65 (.25 to 1.69)</td>
<td>.34 (.13 to .6)</td>
<td>30 (24 to 40)</td>
<td>29 (24 to 50)</td>
<td>35 (26 to 61)</td>
<td>.15 (-.13 to .84)</td>
<td>.17 (0 to .39)</td>
</tr>
<tr>
<td>Oregon</td>
<td>1,028 (785 to 1,229)</td>
<td>1,483 (1,128 to 2,195)</td>
<td>2,043 (1,355 to 3,184)</td>
<td>1 (.48 to 2.02)</td>
<td>.38 (.15 to .62)</td>
<td>32 (25 to 38)</td>
<td>32 (24 to 47)</td>
<td>35 (24 to 55)</td>
<td>.11 (-.17 to .65)</td>
<td>.1 (-.07 to .28)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>3,840 (2,567 to 5,435)</td>
<td>4,185 (3,416 to 6,266)</td>
<td>5,218 (4,204 to 7,441)</td>
<td>.38 (.07 to .99)</td>
<td>.25 (.06 to .52)</td>
<td>27 (19 to 38)</td>
<td>26 (21 to 39)</td>
<td>28 (23 to 42)</td>
<td>.06 (-.18 to .51)</td>
<td>.09 (-.08 to .3)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>350 (278 to 468)</td>
<td>340 (271 to 566)</td>
<td>375 (282 to 650)</td>
<td>.07 (-.22 to .66)</td>
<td>.1 (-.08 to .32)</td>
<td>30 (24 to 41)</td>
<td>25 (20 to 42)</td>
<td>26 (19 to 44)</td>
<td>-.16 (-.38 to .27)</td>
<td>.01 (-.15 to .21)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>1,472 (871 to 1,793)</td>
<td>2,237 (1,665 to 2,654)</td>
<td>2,620 (2,075 to 3,304)</td>
<td>.82 (.38 to 1.83)</td>
<td>.18 (-.04 to .42)</td>
<td>41 (24 to 49)</td>
<td>41 (31 to 49)</td>
<td>39 (31 to 50)</td>
<td>-.02 (-.25 to .5)</td>
<td>-.06 (-.23 to .14)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>250 (157 to 287)</td>
<td>211 (161 to 393)</td>
<td>267 (193 to 517)</td>
<td>.37 (.02 to 1.06)</td>
<td>.26 (.05 to .51)</td>
<td>25 (21 to 38)</td>
<td>22 (17 to 41)</td>
<td>24 (17 to 46)</td>
<td>-.07 (-.3 to .38)</td>
<td>.1 (-.09 to .3)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>2,157 (1,370 to 2,558)</td>
<td>3,290 (2,575 to 4,269)</td>
<td>4,787 (3,326 to 6,388)</td>
<td>1.27 (.72 to 2.76)</td>
<td>.46 (.19 to .71)</td>
<td>40 (26 to 48)</td>
<td>44 (34 to 56)</td>
<td>54 (38 to 71)</td>
<td>.36 (.05 to 1.25)</td>
<td>.23 (.02 to .43)</td>
</tr>
<tr>
<td>Texas</td>
<td>4,453 (3,305 to 5,968)</td>
<td>6,377 (5,237 to 10,016)</td>
<td>7,350 (5,498 to 13,566)</td>
<td>.66 (.19 to 1.97)</td>
<td>.14 (-.09 to .45)</td>
<td>27 (20 to 36)</td>
<td>26 (21 to 40)</td>
<td>22 (17 to 42)</td>
<td>-.18 (-.42 to .5)</td>
<td>-.15 (-.32 to .11)</td>
</tr>
<tr>
<td>Utah</td>
<td>356 (285 to 466)</td>
<td>502 (397 to 845)</td>
<td>703 (546 to 1,232)</td>
<td>.97 (.5 to 1.9)</td>
<td>.2 (.2 to .64)</td>
<td>25 (20 to 33)</td>
<td>21 (17 to 36)</td>
<td>23 (18 to 40)</td>
<td>-.09 (-.31 to .34)</td>
<td>.06 (-.09 to .24)</td>
</tr>
<tr>
<td>Vermont</td>
<td>205 (141 to 245)</td>
<td>222 (178 to 318)</td>
<td>260 (206 to 388)</td>
<td>.29 (-.02 to .97)</td>
<td>.17 (-.01 to .38)</td>
<td>35 (24 to 42)</td>
<td>27 (22 to 38)</td>
<td>28 (22 to 41)</td>
<td>-.19 (-.38 to .22)</td>
<td>.03 (-.13 to .21)</td>
</tr>
<tr>
<td>Virginia</td>
<td>2,334 (1,506 to 2,813)</td>
<td>3,188 (2,496 to 3,868)</td>
<td>4,307 (2,914 to 5,450)</td>
<td>.88 (.36 to 1.89)</td>
<td>.35 (.1 to .62)</td>
<td>37 (23 to 44)</td>
<td>34 (27 to 42)</td>
<td>38 (26 to 48)</td>
<td>.06 (-.22 to .68)</td>
<td>.11 (-.08 to .32)</td>
</tr>
<tr>
<td>Washington</td>
<td>1,882 (1,227 to 2,248)</td>
<td>2,757 (1,911 to 3,564)</td>
<td>3,559 (2,369 to 4,614)</td>
<td>.91 (.48 to 1.76)</td>
<td>.29 (.11 to .51)</td>
<td>38 (24 to 45)</td>
<td>36 (25 to 47)</td>
<td>37 (25 to 48)</td>
<td>-.01 (-.23 to .46)</td>
<td>.02 (-.12 to .2)</td>
</tr>
<tr>
<td>State</td>
<td>Aortic aneurysm</td>
<td>Alabama</td>
<td>Alaska</td>
<td>Arizona</td>
<td>Arkansas</td>
<td>California</td>
<td>Colorado</td>
<td>Connecticut</td>
<td>Delaware</td>
<td>District of Columbia</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,799 (4,416 to 5,212)</td>
<td>4,011 (3,721 to 4,344)</td>
<td>4,045 (3,502 to 4,598)</td>
<td>-16 (-.28 to -.02)</td>
<td>-100 (92 to 109)</td>
<td>69 (64 to 75)</td>
<td>60 (52 to 68)</td>
<td>-4 (-.49 to -.31)</td>
<td>-13 (-.25 to 0)</td>
</tr>
<tr>
<td>West Virginia</td>
<td></td>
<td>996 (803 to 1,315)</td>
<td>1,106 (895 to 1,532)</td>
<td>.36 (.04 to 1.09)</td>
<td>.11 (-.07 to .3)</td>
<td>39 (27 to 46)</td>
<td>40 (33 to 53)</td>
<td>42 (34 to 60)</td>
<td>.11 (-.17 to .66)</td>
<td>.05 (-.12 to .23)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td></td>
<td>1,713 (1,191 to 2,019)</td>
<td>2,679 (1,658 to 3,346)</td>
<td>2,990 (1,936 to 4,194)</td>
<td>.76 (.32 to 1.74)</td>
<td>.12 (-.06 to .34)</td>
<td>33 (23 to 38)</td>
<td>39 (24 to 49)</td>
<td>.16 (-.12 to .79)</td>
<td>-.03 (-.18 to .16)</td>
</tr>
<tr>
<td>Wyoming</td>
<td></td>
<td>118 (97 to 169)</td>
<td>153 (115 to 272)</td>
<td>190 (135 to 356)</td>
<td>.59 (.18 to 1.37)</td>
<td>.24 (.03 to .49)</td>
<td>26 (22 to 38)</td>
<td>24 (18 to 42)</td>
<td>-.06 (-.3 to -.38)</td>
<td>.06 (-.12 to .27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.36 (27 to 46)</td>
<td>.11 (-.07 to .3)</td>
<td>39 (27 to 46)</td>
<td>- .11 (-.17 to .66)</td>
<td>40 (34 to 60)</td>
<td>- .16 (-.28 to .44)</td>
<td>47 (39 to 56)</td>
<td>42 (34 to 60)</td>
<td>- .56 (-.63 to -.49)</td>
</tr>
<tr>
<td>State</td>
<td>Incidence (95% CI)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>18,486 (17,030 to 19,982)</td>
<td>15,746 (14,608 to 16,905)</td>
<td>15,633 (13,889 to 17,588)</td>
<td>-1.15 (-.26 to -.03)</td>
<td>-.01 (-.13 to -.12)</td>
<td>94 (86 to 102)</td>
<td>60 (56 to 64)</td>
<td>48 (42 to 55)</td>
<td>-.49 (-.55 to -.41)</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>6,012 (5,532 to 6,565)</td>
<td>6,072 (5,588 to 6,647)</td>
<td>6,442 (5,588 to 7,450)</td>
<td>.07 (-.08 to .25)</td>
<td>.06 (-.08 to .23)</td>
<td>94 (87 to 103)</td>
<td>62 (58 to 68)</td>
<td>50 (44 to 58)</td>
<td>-.47 (-.54 to -.38)</td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>1,124 (1,038 to 1,216)</td>
<td>1,077 (1,002 to 1,156)</td>
<td>1,125 (1,017 to 1,248)</td>
<td>0 (-1.11 to .14)</td>
<td>.05 (-.06 to .17)</td>
<td>95 (88 to 103)</td>
<td>62 (58 to 67)</td>
<td>54 (49 to 60)</td>
<td>-.43 (-.5 to -.36)</td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>1,163 (1,069 to 1,263)</td>
<td>1,110 (1,015 to 1,200)</td>
<td>1,230 (1,079 to 1,408)</td>
<td>.06 (-.1 to .23)</td>
<td>.11 (-.05 to .29)</td>
<td>104 (95 to 113)</td>
<td>65 (59 to 70)</td>
<td>55 (48 to 63)</td>
<td>-.47 (-.55 to -.38)</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>12,406 (11,506 to 13,353)</td>
<td>9,098 (8,460 to 9,785)</td>
<td>8,658 (7,804 to 9,647)</td>
<td>-.3 (-.38 to -.21)</td>
<td>-.05 (-.15 to .07)</td>
<td>94 (87 to 101)</td>
<td>60 (56 to 65)</td>
<td>50 (45 to 56)</td>
<td>-.47 (-.53 to -.4)</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>6,732 (6,237 to 7,288)</td>
<td>5,498 (5,101 to 5,937)</td>
<td>5,547 (4,828 to 6,341)</td>
<td>-.17 (-.3 to -.05)</td>
<td>.01 (-.14 to .16)</td>
<td>104 (97 to 113)</td>
<td>71 (66 to 77)</td>
<td>62 (54 to 71)</td>
<td>-.41 (-.49 to -.31)</td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td>3,536 (3,266 to 3,811)</td>
<td>2,520 (2,330 to 2,716)</td>
<td>2,437 (2,173 to 2,706)</td>
<td>-.31 (-.4 to -.21)</td>
<td>-.03 (-.14 to .09)</td>
<td>93 (86 to 101)</td>
<td>61 (56 to 66)</td>
<td>53 (47 to 60)</td>
<td>-.43 (-.5 to -.35)</td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>2,910 (2,676 to 3,152)</td>
<td>2,217 (2,044 to 2,389)</td>
<td>2,156 (1,871 to 2,445)</td>
<td>-.26 (-.37 to -.13)</td>
<td>-.03 (-.16 to .12)</td>
<td>94 (87 to 102)</td>
<td>64 (59 to 69)</td>
<td>55 (47 to 62)</td>
<td>-.42 (-.51 to -.32)</td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>4,515 (4,170 to 4,840)</td>
<td>3,731 (3,478 to 4,024)</td>
<td>3,804 (3,405 to 4,214)</td>
<td>-.16 (-.26 to -.05)</td>
<td>.02 (-.1 to .15)</td>
<td>105 (97 to 112)</td>
<td>71 (66 to 77)</td>
<td>62 (55 to 69)</td>
<td>-.41 (-.48 to -.33)</td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>4,236 (3,895 to 4,610)</td>
<td>3,310 (3,051 to 3,608)</td>
<td>3,373 (3,043 to 3,818)</td>
<td>-.2 (-.29 to -.1)</td>
<td>.02 (-.09 to .14)</td>
<td>96 (88 to 105)</td>
<td>65 (60 to 71)</td>
<td>55 (50 to 63)</td>
<td>-.42 (-.49 to -.35)</td>
<td></td>
</tr>
<tr>
<td>Maine</td>
<td>1,757 (1,627 to 1,904)</td>
<td>1,293 (1,191 to 1,397)</td>
<td>1,258 (1,136 to 1,400)</td>
<td>-.28 (-.37 to -.18)</td>
<td>-.03 (-.14 to .1)</td>
<td>116 (108 to 126)</td>
<td>68 (63 to 74)</td>
<td>57 (51 to 63)</td>
<td>-.51 (-.57 to -.45)</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>4,778 (4,390 to 5,215)</td>
<td>3,638 (3,381 to 3,974)</td>
<td>3,529 (3,151 to 3,976)</td>
<td>-.26 (-.35 to -.17)</td>
<td>-.03 (-.13 to .08)</td>
<td>95 (88 to 104)</td>
<td>54 (50 to 60)</td>
<td>44 (39 to 49)</td>
<td>-.54 (-.6 to -.49)</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>6,894 (6,358 to 7,421)</td>
<td>4,426 (4,107 to 4,764)</td>
<td>4,041 (3,647 to 4,462)</td>
<td>-.41 (-.49 to -.33)</td>
<td>-.09 (-.18 to .02)</td>
<td>92 (85 to 99)</td>
<td>52 (48 to 56)</td>
<td>41 (37 to 46)</td>
<td>-.55 (-.61 to -.49)</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>10-Year Incidence</td>
<td>95% CI</td>
<td>5-Year Incidence</td>
<td>95% CI</td>
<td>Age Standardized Prevalence</td>
<td>95% CI</td>
<td>Rate Ratio</td>
<td>95% CI</td>
<td>Age Standardized Prevalence</td>
<td>95% CI</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Michigan</td>
<td>10,544 (8,976 to 11,356)</td>
<td>8,731 (8,187 to 9,364)</td>
<td>8,266 (7,511 to 9,143)</td>
<td>-22 (-3 to -.12)</td>
<td>-05 (-.15 to .05)</td>
<td>102 (94 to 109)</td>
<td>69 (65 to 74)</td>
<td>58 (53 to 64)</td>
<td>-43 (-.49 to -.36)</td>
<td>-16 (-.25 to -.07)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>5,224 (4,805 to 5,673)</td>
<td>4,017 (3,688 to 4,347)</td>
<td>4,058 (3,610 to 4,515)</td>
<td>-22 (-.32 to -.11)</td>
<td>.01 (-.11 to .14)</td>
<td>103 (95 to 112)</td>
<td>63 (58 to 68)</td>
<td>52 (46 to 58)</td>
<td>-49 (-.56 to -.42)</td>
<td>-17 (-.27 to -.06)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>2,641 (2,437 to 2,873)</td>
<td>2,414 (2,217 to 2,635)</td>
<td>2,431 (2,121 to 2,808)</td>
<td>-08 (-.22 to -.07)</td>
<td>.01 (-.14 to .16)</td>
<td>91 (84 to 99)</td>
<td>70 (64 to 76)</td>
<td>61 (53 to 71)</td>
<td>-33 (-.43 to -.22)</td>
<td>-13 (-.26 to 0)</td>
</tr>
<tr>
<td>Missouri</td>
<td>6,313 (5,841 to 6,775)</td>
<td>4,711 (4,418 to 5,040)</td>
<td>4,661 (4,248 to 5,134)</td>
<td>-26 (-.34 to -.18)</td>
<td>-.01 (-.11 to .1)</td>
<td>98 (91 to 105)</td>
<td>63 (59 to 68)</td>
<td>54 (50 to 60)</td>
<td>-.44 (-.5 to -.38)</td>
<td>-.13 (-.22 to -.03)</td>
</tr>
<tr>
<td>Montana</td>
<td>976 (894 to 1,071)</td>
<td>831 (767 to 901)</td>
<td>854 (740 to 974)</td>
<td>-.12 (-.26 to -.03)</td>
<td>.03 (-.11 to .19)</td>
<td>100 (92 to 109)</td>
<td>64 (59 to 70)</td>
<td>54 (47 to 62)</td>
<td>-.46 (-.54 to -.37)</td>
<td>-.16 (-.27 to -.02)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>1,858 (1,708 to 2,017)</td>
<td>1,340 (1,239 to 1,443)</td>
<td>1,341 (1,205 to 1,478)</td>
<td>-.28 (-.36 to -.18)</td>
<td>0 (-.11 to .12)</td>
<td>93 (86 to 101)</td>
<td>59 (55 to 64)</td>
<td>52 (46 to 57)</td>
<td>-.44 (-.51 to -.37)</td>
<td>-.13 (-.23 to -.02)</td>
</tr>
<tr>
<td>Nevada</td>
<td>1,339 (1,221 to 1,492)</td>
<td>1,903 (1,750 to 2,109)</td>
<td>2,129 (1,869 to 2,426)</td>
<td>.59 (.39 to .8)</td>
<td>.12 (.01 to .26)</td>
<td>106 (97 to 117)</td>
<td>66 (61 to 73)</td>
<td>54 (47 to 61)</td>
<td>-.49 (-.56 to -.43)</td>
<td>-.19 (-.28 to -.09)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1,224 (1,130 to 1,331)</td>
<td>952 (880 to 1,023)</td>
<td>974 (876 to 1,080)</td>
<td>-.2 (-.3 to -.09)</td>
<td>-.02 (-.09 to .15)</td>
<td>103 (95 to 112)</td>
<td>57 (53 to 61)</td>
<td>47 (42 to 53)</td>
<td>-.54 (-.59 to -.48)</td>
<td>-.17 (-.26 to -.07)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>8,894 (8,218 to 9,582)</td>
<td>5,930 (5,531 to 6,381)</td>
<td>5,309 (4,768 to 5,921)</td>
<td>-.4 (-.48 to -.32)</td>
<td>-.1 (-.2 to .01)</td>
<td>93 (86 to 100)</td>
<td>53 (50 to 57)</td>
<td>42 (38 to 47)</td>
<td>-.55 (-.61 to -.49)</td>
<td>-.21 (-.3 to -.11)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>1,323 (1,213 to 1,452)</td>
<td>1,334 (1,233 to 1,441)</td>
<td>1,419 (1,225 to 1,614)</td>
<td>.07 (-.09 to .25)</td>
<td>.06 (-.08 to .23)</td>
<td>85 (78 to 93)</td>
<td>56 (52 to 60)</td>
<td>49 (43 to 56)</td>
<td>-.42 (-.51 to -.32)</td>
<td>-.11 (-.24 to -.02)</td>
</tr>
<tr>
<td>New York</td>
<td>19,121 (17,790 to 20,489)</td>
<td>12,640 (11,807 to 13,600)</td>
<td>11,313 (9,995 to 12,858)</td>
<td>-.41 (-.49 to -.32)</td>
<td>-.1 (-.22 to .03)</td>
<td>89 (82 to 95)</td>
<td>52 (49 to 56)</td>
<td>41 (36 to 47)</td>
<td>-.54 (-.6 to -.46)</td>
<td>-.21 (-.31 to -.08)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>7,266 (6,763 to 7,836)</td>
<td>6,664 (6,208 to 7,131)</td>
<td>6,911 (6,278 to 7,639)</td>
<td>-.05 (-.15 to .07)</td>
<td>.04 (-.07 to .16)</td>
<td>96 (90 to 104)</td>
<td>61 (57 to 66)</td>
<td>50 (45 to 55)</td>
<td>-.48 (-.54 to -.42)</td>
<td>-.19 (-.28 to -.1)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>727 (666 to 792)</td>
<td>518 (473 to 563)</td>
<td>510 (445 to 577)</td>
<td>-.3 (-.39 to -.19)</td>
<td>-.01 (-.15 to .12)</td>
<td>90 (82 to 98)</td>
<td>59 (54 to 64)</td>
<td>51 (45 to 59)</td>
<td>-.43 (-.51 to -.34)</td>
<td>-.12 (-.25 to 0)</td>
</tr>
<tr>
<td>State</td>
<td>X deaths (95% UI)</td>
<td>Y deaths (95% UI)</td>
<td>Z deaths (95% UI)</td>
<td>X rate (95% UI)</td>
<td>Y rate (95% UI)</td>
<td>Z rate (95% UI)</td>
<td>X Y diff</td>
<td>Y Z diff</td>
<td>Z X diff</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td>13,687 (12,719 to 14,669)</td>
<td>10,188 (9,529 to 10,869)</td>
<td>9,727 (8,756 to 10,780)</td>
<td>-.29 (-.37 to -.19)</td>
<td>-.04 (-.14 to -.07)</td>
<td>105 (98 to 113)</td>
<td>68 (64 to 73)</td>
<td>59 (52 to 65)</td>
<td>-.44 (-.51 to -.36)</td>
<td>-.14 (-.23 to -.04)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>3,448 (3,201 to 3,713)</td>
<td>3,065 (2,872 to 3,280)</td>
<td>3,091 (2,796 to 3,407)</td>
<td>-.1 (-.21 to -.02)</td>
<td>.01 (-.1 to .13)</td>
<td>90 (83 to 97)</td>
<td>68 (64 to 73)</td>
<td>60 (54 to 66)</td>
<td>-.33 (-.41 to -.24)</td>
<td>-.12 (-.22 to -.02)</td>
</tr>
<tr>
<td>Oregon</td>
<td>3,534 (3,261 to 3,815)</td>
<td>2,968 (2,754 to 3,189)</td>
<td>3,063 (2,761 to 3,369)</td>
<td>-.13 (-.24 to -.02)</td>
<td>.03 (-.08 to .15)</td>
<td>100 (92 to 108)</td>
<td>62 (57 to 66)</td>
<td>51 (46 to 56)</td>
<td>-.49 (-.55 to -.43)</td>
<td>-.18 (-.27 to -.08)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>16,340 (15,184 to 17,526)</td>
<td>11,270 (10,573 to 12,031)</td>
<td>10,481 (9,496 to 11,539)</td>
<td>-.36 (-.43 to -.28)</td>
<td>-.07 (-.16 to .04)</td>
<td>100 (93 to 107)</td>
<td>63 (59 to 67)</td>
<td>54 (49 to 59)</td>
<td>-.46 (-.52 to -.39)</td>
<td>-.15 (-.24 to -.04)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1,179 (1,088 to 1,276)</td>
<td>779 (713 to 846)</td>
<td>714 (629 to 814)</td>
<td>-.39 (-.48 to -.3)</td>
<td>-.08 (-.21 to .05)</td>
<td>89 (82 to 97)</td>
<td>54 (50 to 59)</td>
<td>46 (40 to 52)</td>
<td>-.49 (-.56 to -.4)</td>
<td>-.16 (-.28 to -.02)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>3,990 (3,672 to 4,326)</td>
<td>3,795 (3,508 to 4,099)</td>
<td>4,187 (3,693 to 4,752)</td>
<td>.05 (-.1 to .21)</td>
<td>.1 (-.04 to .26)</td>
<td>106 (98 to 115)</td>
<td>70 (65 to 76)</td>
<td>60 (53 to 67)</td>
<td>-.44 (-.52 to -.35)</td>
<td>-.15 (-.26 to -.03)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>908 (830 to 987)</td>
<td>693 (633 to 752)</td>
<td>706 (621 to 794)</td>
<td>-.22 (-.34 to -.09)</td>
<td>.02 (-.11 to .17)</td>
<td>102 (93 to 111)</td>
<td>67 (61 to 72)</td>
<td>58 (51 to 66)</td>
<td>-.43 (-.51 to -.33)</td>
<td>-.12 (-.24 to -.01)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>5,109 (4,699 to 5,538)</td>
<td>4,731 (4,404 to 5,071)</td>
<td>4,995 (4,487 to 5,537)</td>
<td>-.02 (-.15 to -.11)</td>
<td>.06 (-.06 to .17)</td>
<td>89 (82 to 96)</td>
<td>63 (58 to 67)</td>
<td>54 (49 to 61)</td>
<td>-.39 (-.47 to -.3)</td>
<td>-.13 (-.23 to -.03)</td>
</tr>
<tr>
<td>Texas</td>
<td>13,271 (12,306 to 14,297)</td>
<td>12,867 (11,960 to 13,752)</td>
<td>14,518 (13,073 to 16,131)</td>
<td>.1 (-.03 to .23)</td>
<td>.13 (.01 to .26)</td>
<td>80 (74 to 86)</td>
<td>53 (49 to 56)</td>
<td>45 (40 to 50)</td>
<td>-.44 (-.51 to -.37)</td>
<td>-.15 (-.24 to -.05)</td>
</tr>
<tr>
<td>Utah</td>
<td>1,109 (1,017 to 1,201)</td>
<td>1,201 (1,111 to 1,294)</td>
<td>1,341 (1,205 to 1,491)</td>
<td>.21 (.06 to .38)</td>
<td>.12 (0 to .26)</td>
<td>77 (70 to 83)</td>
<td>52 (48 to 56)</td>
<td>43 (39 to 48)</td>
<td>-.41 (-.51 to -.36)</td>
<td>-.17 (-.26 to -.06)</td>
</tr>
<tr>
<td>Vermont</td>
<td>724 (668 to 783)</td>
<td>553 (512 to 595)</td>
<td>539 (482 to 600)</td>
<td>-.25 (-.34 to -.15)</td>
<td>-.02 (-.14 to .1)</td>
<td>116 (107 to 126)</td>
<td>66 (61 to 71)</td>
<td>54 (48 to 60)</td>
<td>-.54 (-.59 to -.47)</td>
<td>-.18 (-.28 to -.08)</td>
</tr>
<tr>
<td>Virginia</td>
<td>6,076 (5,654 to 6,538)</td>
<td>4,878 (4,548 to 5,226)</td>
<td>4,943 (4,468 to 5,425)</td>
<td>-.19 (-.28 to -.08)</td>
<td>.01 (-.1 to .13)</td>
<td>95 (88 to 102)</td>
<td>54 (50 to 58)</td>
<td>44 (39 to 48)</td>
<td>-.54 (-.59 to -.48)</td>
<td>-.19 (-.28 to -.1)</td>
</tr>
<tr>
<td>Washington</td>
<td>5,213 (4,822 to 5,627)</td>
<td>4,625 (4,334 to 4,941)</td>
<td>4,879 (4,378 to 5,358)</td>
<td>-.06 (-.18 to .06)</td>
<td>.06 (-.06 to .18)</td>
<td>97 (90 to 105)</td>
<td>61 (57 to 65)</td>
<td>50 (44 to 55)</td>
<td>-.49 (-.55 to -.43)</td>
<td>-.18 (-.27 to -.09)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
<th>West Virginia</th>
<th>Wisconsin</th>
<th>Wyoming</th>
<th>Atrial fibrillation and flutter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,551 (2,350 to 2,763)</td>
<td>5,860 (5,431 to 6,295)</td>
<td>489 (448 to 534)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,951 (1,797 to 2,097)</td>
<td>4,516 (4,234 to 4,828)</td>
<td>482 (441 to 522)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,851 (1,668 to 2,060)</td>
<td>4,487 (4,072 to 4,932)</td>
<td>492 (427 to 560)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- .27 (-.36 to -.18)</td>
<td>- .23 (-.32 to -.13)</td>
<td>.01 (-.14 to .18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- .05 (-.16 to .07)</td>
<td>-.01 (-.11 to .11)</td>
<td>.02 (-.12 to .18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>106 (98 to 114)</td>
<td>98 (91 to 106)</td>
<td>107 (99 to 117)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75 (69 to 80)</td>
<td>63 (59 to 67)</td>
<td>75 (69 to 82)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65 (59 to 73)</td>
<td>53 (48 to 59)</td>
<td>63 (55 to 72)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- .38 (-.46 to -.3)</td>
<td>-.46 (-.52 to -.39)</td>
<td>- .42 (-.5 to -.31)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- .12 (-.22 to -.01)</td>
<td>- .15 (-.24 to -.05)</td>
<td>- .17 (-.29 to -.04)</td>
<td></td>
</tr>
</tbody>
</table>

Atrial fibrillation and flutter

<table>
<thead>
<tr>
<th></th>
<th>Alabama</th>
<th>Alaska</th>
<th>Arizona</th>
<th>Arkansas</th>
<th>California</th>
<th>Colorado</th>
<th>Connecticut</th>
<th>Delaware</th>
<th>District of Columbia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5,967 (4,550 to 7,672)</td>
<td>325 (242 to 424)</td>
<td>5,313 (4,009 to 6,868)</td>
<td>3,785 (2,853 to 4,911)</td>
<td>27,867 (20,719 to 35,905)</td>
<td>3,620 (2,706 to 4,704)</td>
<td>5,629 (4,283 to 7,247)</td>
<td>1,003 (752 to 1,300)</td>
<td>781 (590 to 1,026)</td>
</tr>
<tr>
<td></td>
<td>8,038 (6,222 to 10,099)</td>
<td>753 (571 to 959)</td>
<td>10,824 (8,418 to 13,651)</td>
<td>4,767 (3,671 to 6,012)</td>
<td>53,886 (41,736 to 67,851)</td>
<td>6,449 (5,007 to 8,091)</td>
<td>8,121 (6,301 to 10,201)</td>
<td>1,777 (1,385 to 2,255)</td>
<td>779 (594 to 983)</td>
</tr>
<tr>
<td></td>
<td>9,757 (7,582 to 12,309)</td>
<td>1,069 (809 to 1,368)</td>
<td>15,193 (11,786 to 19,082)</td>
<td>5,752 (4,440 to 7,216)</td>
<td>69,897 (54,711 to 88,461)</td>
<td>9,248 (7,137 to 11,587)</td>
<td>9,136 (7,149 to 11,461)</td>
<td>2,363 (1,843 to 2,982)</td>
<td>870 (659 to 1,096)</td>
</tr>
<tr>
<td></td>
<td>.64 (.45 to .84)</td>
<td>2.3 (2.01 to 2.6)</td>
<td>1.87 (1.53 to 2.2)</td>
<td>.53 (.36 to .71)</td>
<td>1.52 (1.21 to 1.84)</td>
<td>1.57 (1.23 to 1.92)</td>
<td>1.57 (.44 to .83)</td>
<td>1.36 (1.11 to 1.64)</td>
<td>.12 (.01 to .23)</td>
</tr>
<tr>
<td></td>
<td>.21 (.16 to .28)</td>
<td>.42 (.34 to .51)</td>
<td>.4 (.34 to .47)</td>
<td>.21 (.15 to .26)</td>
<td>.3 (.24 to .37)</td>
<td>.43 (.36 to .51)</td>
<td>.13 (.07 to .19)</td>
<td>.33 (.27 to .39)</td>
<td>.12 (.06 to .18)</td>
</tr>
<tr>
<td></td>
<td>121 (92 to 155)</td>
<td>130 (98 to 169)</td>
<td>122 (92 to 158)</td>
<td>115 (86 to 149)</td>
<td>130 (100 to 164)</td>
<td>125 (97 to 156)</td>
<td>133 (101 to 171)</td>
<td>152 (118 to 193)</td>
<td>107 (80 to 140)</td>
</tr>
<tr>
<td></td>
<td>130 (101 to 164)</td>
<td>144 (111 to 183)</td>
<td>138 (107 to 175)</td>
<td>121 (92 to 153)</td>
<td>129 (101 to 164)</td>
<td>128 (98 to 160)</td>
<td>155 (121 to 198)</td>
<td>151 (117 to 191)</td>
<td>111 (84 to 140)</td>
</tr>
<tr>
<td></td>
<td>131 (101 to 165)</td>
<td>146 (111 to 186)</td>
<td>137 (106 to 173)</td>
<td>124 (95 to 156)</td>
<td>129 (101 to 164)</td>
<td>128 (98 to 160)</td>
<td>.15 (0 to .3)</td>
<td>155 (121 to 198)</td>
<td>110 (83 to 139)</td>
</tr>
<tr>
<td></td>
<td>.09 (-.04 to .21)</td>
<td>.12 (.03 to .23)</td>
<td>.13 (0 to .25)</td>
<td>.08 (-.03 to .2)</td>
<td>0 (.02 to .08)</td>
<td>.4 (.23 to .57)</td>
<td>0 (.02 to .08)</td>
<td>.17 (.04 to .31)</td>
<td>.03 (-.06 to .13)</td>
</tr>
<tr>
<td></td>
<td>.01 (-.04 to .06)</td>
<td>.01 (-.05 to .07)</td>
<td>0 (-.05 to .04)</td>
<td>0 (-.05 to .04)</td>
<td>0 (-.05 to .05)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Total (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>28,301</td>
<td>46,224</td>
<td>59,546</td>
<td>1.11</td>
<td>.29</td>
<td>133</td>
<td>153</td>
<td>152</td>
<td>.14</td>
<td>-.01</td>
</tr>
<tr>
<td>Georgia</td>
<td>7,607</td>
<td>12,616</td>
<td>17,097</td>
<td>1.25</td>
<td>.36</td>
<td>120</td>
<td>133</td>
<td>131</td>
<td>.1</td>
<td>-.01</td>
</tr>
<tr>
<td>Hawaii</td>
<td>1,359</td>
<td>2,280</td>
<td>2,960</td>
<td>1.19</td>
<td>.3</td>
<td>117</td>
<td>122</td>
<td>122</td>
<td>.05</td>
<td>-.01</td>
</tr>
<tr>
<td>Idaho</td>
<td>1,400</td>
<td>2,472</td>
<td>3,504</td>
<td>1.51</td>
<td>.42</td>
<td>122</td>
<td>139</td>
<td>145</td>
<td>.19</td>
<td>-.01</td>
</tr>
<tr>
<td>Illinois</td>
<td>16,365</td>
<td>20,799</td>
<td>24,747</td>
<td>.52</td>
<td>.19</td>
<td>119</td>
<td>128</td>
<td>138</td>
<td>.14</td>
<td>-.01</td>
</tr>
<tr>
<td>Indiana</td>
<td>8,284</td>
<td>11,366</td>
<td>13,807</td>
<td>.67</td>
<td>.22</td>
<td>124</td>
<td>138</td>
<td>141</td>
<td>.14</td>
<td>-.01</td>
</tr>
<tr>
<td>Iowa</td>
<td>4,907</td>
<td>5,920</td>
<td>6,451</td>
<td>.32</td>
<td>.09</td>
<td>119</td>
<td>128</td>
<td>125</td>
<td>.06</td>
<td>-.01</td>
</tr>
<tr>
<td>Kansas</td>
<td>3,915</td>
<td>4,910</td>
<td>5,826</td>
<td>.49</td>
<td>.19</td>
<td>118</td>
<td>127</td>
<td>132</td>
<td>.13</td>
<td>0.02</td>
</tr>
<tr>
<td>Kentucky</td>
<td>5,862</td>
<td>8,358</td>
<td>10,131</td>
<td>.73</td>
<td>.21</td>
<td>132</td>
<td>152</td>
<td>153</td>
<td>.16</td>
<td>-0.04</td>
</tr>
<tr>
<td>Louisiana</td>
<td>5,543</td>
<td>7,182</td>
<td>8,825</td>
<td>.6</td>
<td>.23</td>
<td>124</td>
<td>135</td>
<td>136</td>
<td>.1</td>
<td>-0.04</td>
</tr>
<tr>
<td>Maine</td>
<td>2,126</td>
<td>3,241</td>
<td>3,921</td>
<td>.85</td>
<td>.21</td>
<td>135</td>
<td>159</td>
<td>158</td>
<td>.17</td>
<td>-0.05</td>
</tr>
<tr>
<td>Maryland</td>
<td>6,228</td>
<td>9,704</td>
<td>12,245</td>
<td>.97</td>
<td>.26</td>
<td>126</td>
<td>140</td>
<td>141</td>
<td>.13</td>
<td>0.02</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>10,670</td>
<td>15,439</td>
<td>17,263</td>
<td>.62</td>
<td>.12</td>
<td>137</td>
<td>168</td>
<td>160</td>
<td>.17</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>13,067</td>
<td>(9,912 to 16,655)</td>
<td>17,720</td>
<td>(13,681 to 22,109)</td>
<td>21,926</td>
<td>(17,036 to 27,512)</td>
<td>.68 (.54 to .83)</td>
<td>.24 (.17 to .31)</td>
<td>124</td>
<td>(94 to 158)</td>
<td>132</td>
<td>(101 to 165)</td>
<td>139</td>
<td>(107 to 174)</td>
<td>.12 (.03 to .22)</td>
<td>.05 (0 to .11)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>6,264</td>
<td>(4,750 to 8,128)</td>
<td>8,642</td>
<td>(6,667 to 10,921)</td>
<td>10,679</td>
<td>(8,252 to 13,443)</td>
<td>.71 (.5 to .92)</td>
<td>.24 (.17 to .31)</td>
<td>116</td>
<td>(87 to 151)</td>
<td>127</td>
<td>(98 to 161)</td>
<td>127</td>
<td>(98 to 161)</td>
<td>.1 (-.03 to .24)</td>
<td>.01 (-.04 to .06)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>3,577</td>
<td>(2,691 to 4,632)</td>
<td>4,675</td>
<td>(3,640 to 5,902)</td>
<td>5,428</td>
<td>(4,227 to 6,795)</td>
<td>.52 (.36 to .69)</td>
<td>.16 (.1 to .22)</td>
<td>117</td>
<td>(87 to 151)</td>
<td>129</td>
<td>(100 to 163)</td>
<td>125</td>
<td>(97 to 157)</td>
<td>.08 (-.04 to .19)</td>
<td>-.03 (-.08 to .03)</td>
</tr>
<tr>
<td>Missouri</td>
<td>8,482</td>
<td>(6,420 to 10,811)</td>
<td>11,557</td>
<td>(8,980 to 14,535)</td>
<td>14,012</td>
<td>(10,916 to 17,730)</td>
<td>.66 (.46 to .86)</td>
<td>.21 (.16 to .27)</td>
<td>123</td>
<td>(93 to 158)</td>
<td>142</td>
<td>(110 to 179)</td>
<td>145</td>
<td>(112 to 185)</td>
<td>.19 (.05 to .32)</td>
<td>-.03 (-.02 to .07)</td>
</tr>
<tr>
<td>Montana</td>
<td>1,254</td>
<td>(943 to 1,617)</td>
<td>2,096</td>
<td>(1,622 to 2,623)</td>
<td>2,607</td>
<td>(2,025 to 3,275)</td>
<td>1.09 (.82 to 1.36)</td>
<td>.24 (.18 to .31)</td>
<td>124</td>
<td>(93 to 160)</td>
<td>150</td>
<td>(116 to 190)</td>
<td>147</td>
<td>(114 to 186)</td>
<td>.19 (.04 to .34)</td>
<td>-.02 (-.07 to .03)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>2,687</td>
<td>(2,041 to 3,441)</td>
<td>3,390</td>
<td>(2,628 to 4,220)</td>
<td>3,923</td>
<td>(2,996 to 4,914)</td>
<td>.46 (.32 to .61)</td>
<td>.16 (.1 to .22)</td>
<td>123</td>
<td>(93 to 158)</td>
<td>135</td>
<td>(103 to 169)</td>
<td>135</td>
<td>(102 to 171)</td>
<td>.1 (0 to .21)</td>
<td>.0 (-.05 to .05)</td>
</tr>
<tr>
<td>Nevada</td>
<td>1,397</td>
<td>(1,044 to 1,828)</td>
<td>3,623</td>
<td>(2,799 to 4,587)</td>
<td>5,176</td>
<td>(4,027 to 6,523)</td>
<td>2.72 (2.26 to 3.19)</td>
<td>.43 (.37 to .5)</td>
<td>119</td>
<td>(90 to 154)</td>
<td>129</td>
<td>(100 to 163)</td>
<td>127</td>
<td>(98 to 159)</td>
<td>.07 (-.06 to .2)</td>
<td>-.02 (-.06 to .03)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1,631</td>
<td>(1,231 to 2,095)</td>
<td>2,799</td>
<td>(2,173 to 3,507)</td>
<td>3,549</td>
<td>(2,763 to 4,480)</td>
<td>1.18 (.94 to 1.43)</td>
<td>.27 (.22 to .33)</td>
<td>133</td>
<td>(100 to 172)</td>
<td>161</td>
<td>(125 to 203)</td>
<td>158</td>
<td>(122 to 201)</td>
<td>.19 (.06 to .32)</td>
<td>-.02 (-.06 to .03)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>12,518</td>
<td>(9,544 to 16,032)</td>
<td>17,694</td>
<td>(13,834 to 22,170)</td>
<td>20,760</td>
<td>(16,168 to 25,820)</td>
<td>.66 (.48 to .85)</td>
<td>.17 (.12 to .23)</td>
<td>129</td>
<td>(99 to 166)</td>
<td>147</td>
<td>(114 to 185)</td>
<td>149</td>
<td>(115 to 187)</td>
<td>.16 (.04 to .28)</td>
<td>.01 (-.04 to .06)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>1,664</td>
<td>(1,245 to 2,172)</td>
<td>2,623</td>
<td>(2,036 to 3,288)</td>
<td>3,350</td>
<td>(2,618 to 4,193)</td>
<td>1.02 (.76 to 1.29)</td>
<td>.28 (.21 to .35)</td>
<td>108</td>
<td>(81 to 140)</td>
<td>105</td>
<td>(82 to 132)</td>
<td>103</td>
<td>(80 to 129)</td>
<td>-.04 (-.16 to .09)</td>
<td>-.02 (-.07 to .03)</td>
</tr>
<tr>
<td>New York</td>
<td>29,543</td>
<td>(22,289 to 37,949)</td>
<td>39,194</td>
<td>(30,478 to 49,441)</td>
<td>45,115</td>
<td>(35,316 to 56,812)</td>
<td>.53 (.36 to .71)</td>
<td>.15 (.1 to .21)</td>
<td>131</td>
<td>(99 to 169)</td>
<td>149</td>
<td>(115 to 189)</td>
<td>149</td>
<td>(116 to 189)</td>
<td>.14 (.02 to .27)</td>
<td>0 (-.04 to .05)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>9,236</td>
<td>(6,995 to 11,859)</td>
<td>15,430</td>
<td>(11,974 to 19,383)</td>
<td>20,190</td>
<td>(15,676 to 25,417)</td>
<td>1.19 (.94 to 1.46)</td>
<td>.31 (.26 to .36)</td>
<td>122</td>
<td>(92 to 157)</td>
<td>137</td>
<td>(106 to 172)</td>
<td>134</td>
<td>(104 to 170)</td>
<td>.1 (-.02 to .23)</td>
<td>-.02 (-.06 to .02)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>1,020</td>
<td>(764 to 1,329)</td>
<td>1,265</td>
<td>(979 to 1,582)</td>
<td>1,434</td>
<td>(1,105 to 1,824)</td>
<td>.41 (.28 to .54)</td>
<td>.13 (.07 to .2)</td>
<td>115</td>
<td>(85 to 150)</td>
<td>125</td>
<td>(96 to 157)</td>
<td>126</td>
<td>(96 to 159)</td>
<td>.1 (0 to .21)</td>
<td>-.01 (-.05 to .07)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Death Count</th>
<th>Confidence Interval</th>
<th>Death Rate</th>
<th>Confidence Interval</th>
<th>Odds Ratio</th>
<th>Confidence Interval</th>
<th>Geographic Rate</th>
<th>Confidence Interval</th>
<th>Study Rate</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>17,111</td>
<td>(12,952 to 22,154)</td>
<td>.65</td>
<td>(.46 to .84)</td>
<td>.17</td>
<td>(.12 to .22)</td>
<td>129</td>
<td>(97 to 166)</td>
<td>149</td>
<td>(116 to 186)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>4,893</td>
<td>(3,701 to 6,207)</td>
<td>.64</td>
<td>(.45 to .83)</td>
<td>.24</td>
<td>(.19 to .3)</td>
<td>120</td>
<td>(91 to 153)</td>
<td>132</td>
<td>(103 to 168)</td>
</tr>
<tr>
<td>Oregon</td>
<td>4,453</td>
<td>(3,350 to 5,816)</td>
<td>1.08</td>
<td>(.85 to 1.31)</td>
<td>.27</td>
<td>(.21 to .33)</td>
<td>121</td>
<td>(91 to 158)</td>
<td>141</td>
<td>(109 to 177)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>22,207</td>
<td>(16,778 to 28,670)</td>
<td>.49</td>
<td>(.33 to .66)</td>
<td>.12</td>
<td>(.08 to .17)</td>
<td>132</td>
<td>(100 to 171)</td>
<td>149</td>
<td>(115 to 188)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1,735</td>
<td>(1,312 to 2,233)</td>
<td>.5</td>
<td>(.34 to .66)</td>
<td>.11</td>
<td>(.05 to .17)</td>
<td>124</td>
<td>(94 to 160)</td>
<td>145</td>
<td>(112 to 184)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>4,475</td>
<td>(3,366 to 5,760)</td>
<td>1.37</td>
<td>(1.09 to 1.66)</td>
<td>.38</td>
<td>(.31 to .45)</td>
<td>122</td>
<td>(92 to 156)</td>
<td>136</td>
<td>(105 to 172)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>1,188</td>
<td>(898 to 1,524)</td>
<td>1.56</td>
<td>(1.209 to 1.984)</td>
<td>1.93</td>
<td>(1.487 to 2,453)</td>
<td>120</td>
<td>(90 to 154)</td>
<td>133</td>
<td>(102 to 169)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>7,213</td>
<td>(5,466 to 9,317)</td>
<td>1.3</td>
<td>(1.03 to 1.66)</td>
<td>.31</td>
<td>(.24 to .37)</td>
<td>122</td>
<td>(93 to 159)</td>
<td>131</td>
<td>(101 to 166)</td>
</tr>
<tr>
<td>Texas</td>
<td>20,236</td>
<td>(15,254 to 26,172)</td>
<td>1.29</td>
<td>(1.05 to 1.56)</td>
<td>.36</td>
<td>(.3 to .42)</td>
<td>121</td>
<td>(91 to 156)</td>
<td>140</td>
<td>(108 to 176)</td>
</tr>
<tr>
<td>Utah</td>
<td>1,705</td>
<td>(1,294 to 2,209)</td>
<td>1.45</td>
<td>(1.17 to 1.73)</td>
<td>.37</td>
<td>(.3 to .43)</td>
<td>118</td>
<td>(89 to 153)</td>
<td>131</td>
<td>(101 to 166)</td>
</tr>
<tr>
<td>Vermont</td>
<td>822</td>
<td>(620 to 1,060)</td>
<td>1.62</td>
<td>(1.241 to 2,045)</td>
<td>.98</td>
<td>(.79 to 1.17)</td>
<td>126</td>
<td>(95 to 163)</td>
<td>146</td>
<td>(111 to 185)</td>
</tr>
<tr>
<td>Virginia</td>
<td>7,736</td>
<td>(5,839 to 9,955)</td>
<td>1.11</td>
<td>(0.87 to 1.37)</td>
<td>.27</td>
<td>(.22 to .32)</td>
<td>121</td>
<td>(91 to 156)</td>
<td>139</td>
<td>(107 to 174)</td>
</tr>
<tr>
<td>Washington</td>
<td>6,724</td>
<td>(5,048 to 8,655)</td>
<td>1.2</td>
<td>(0.95 to 1.48)</td>
<td>.32</td>
<td>(.27 to .38)</td>
<td>123</td>
<td>(92 to 158)</td>
<td>140</td>
<td>(108 to 177)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Endocarditis</th>
<th>Cardiovascular Disease (95% CI)</th>
<th>Cardiovascular Disease (95% CI)</th>
<th>CV Disease (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Virginia</td>
<td>3,174 (2,383 to 4,054)</td>
<td>4,078 (3,137 to 5,113)</td>
<td>4,727 (3,678 to 5,941)</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>7,676 (5,787 to 9,872)</td>
<td>10,566 (8,241 to 13,292)</td>
<td>12,571 (9,713 to 15,737)</td>
<td></td>
</tr>
<tr>
<td>Wyoming</td>
<td>511 (385 to 668)</td>
<td>769 (591 to 978)</td>
<td>984 (754 to 1,241)</td>
<td></td>
</tr>
<tr>
<td>Endocarditis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>1,569 (1,225 to 2,092)</td>
<td>2,287 (1,552 to 2,703)</td>
<td>2,705 (1,853 to 3,330)</td>
<td>.74 (.33 to 1.13)</td>
</tr>
<tr>
<td>Alaska</td>
<td>37 (101 to 203)</td>
<td>387 (219 to 504)</td>
<td>1.33 (.96 to 1.72)</td>
<td>.28 (1 to .48)</td>
</tr>
<tr>
<td>Arizona</td>
<td>1,381 (1,065 to 1,812)</td>
<td>2,631 (1,943 to 3,311)</td>
<td>3,265 (2,530 to 4,405)</td>
<td>1.37 (1.1 to 1.68)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>944 (751 to 1,249)</td>
<td>1,406 (958 to 1,692)</td>
<td>1,649 (1,123 to 1,999)</td>
<td>.76 (.39 to 1.12)</td>
</tr>
<tr>
<td>California</td>
<td>9,283 (7,705 to 13,968)</td>
<td>12,147 (9,813 to 18,482)</td>
<td>14,727 (11,102 to 23,411)</td>
<td>.58 (.31 to .88)</td>
</tr>
<tr>
<td>Colorado</td>
<td>1,138 (854 to 1,470)</td>
<td>1,928 (1,421 to 2,374)</td>
<td>2,601 (1,898 to 3,268)</td>
<td>1.29 (1 to 1.62)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1,299 (1,063 to 1,828)</td>
<td>1,548 (1,226 to 2,117)</td>
<td>1,688 (1,349 to 2,361)</td>
<td>.3 (.13 to .48)</td>
</tr>
<tr>
<td>Delaware</td>
<td>288 (208 to 352)</td>
<td>448 (301 to 530)</td>
<td>568 (393 to 678)</td>
<td>.97 (.74 to 1.23)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>416 (232 to 521)</td>
<td>364 (219 to 439)</td>
<td>393 (262 to 489)</td>
<td>-.03 (-.24 to .28)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Population</th>
<th>All-cause Mortality</th>
<th>CVD Mortality</th>
<th>RR</th>
<th>95% CI</th>
<th>RR</th>
<th>95% CI</th>
<th>RR</th>
<th>95% CI</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>5,953 (4,742 to 8,176)</td>
<td>9,200 (6,944 to 11,827)</td>
<td>11,498 (8,801 to 15,265)</td>
<td>.94</td>
<td>(.7 to 1.22)</td>
<td>.25</td>
<td>(.1 to .41)</td>
<td>.35</td>
<td>(28 to 47)</td>
<td>.37</td>
<td>(28 to 47)</td>
</tr>
<tr>
<td>Georgia</td>
<td>2,329 (1,770 to 3,043)</td>
<td>3,899 (2,801 to 4,774)</td>
<td>5,003 (3,635 to 6,224)</td>
<td>1.15</td>
<td>(.85 to 1.47)</td>
<td>.29</td>
<td>(.12 to .48)</td>
<td>.36</td>
<td>(27 to 47)</td>
<td>.40</td>
<td>(29 to 49)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>385 (318 to 556)</td>
<td>582 (453 to 777)</td>
<td>711 (566 to 959)</td>
<td>.86</td>
<td>(.59 to 1.12)</td>
<td>.22</td>
<td>(.1 to .34)</td>
<td>.33</td>
<td>(27 to 47)</td>
<td>.35</td>
<td>(27 to 47)</td>
</tr>
<tr>
<td>Idaho</td>
<td>363 (271 to 449)</td>
<td>630 (426 to 742)</td>
<td>823 (563 to 1,003)</td>
<td>1.27</td>
<td>(.9 to 1.68)</td>
<td>.31</td>
<td>(.14 to .49)</td>
<td>.34</td>
<td>(25 to 42)</td>
<td>.37</td>
<td>(25 to 44)</td>
</tr>
<tr>
<td>Illinois</td>
<td>4,464 (3,493 to 5,993)</td>
<td>5,431 (4,225 to 7,250)</td>
<td>6,064 (4,955 to 8,495)</td>
<td>.36</td>
<td>(.2 to .54)</td>
<td>.12</td>
<td>(-.01 to .25)</td>
<td>.35</td>
<td>(27 to 47)</td>
<td>.37</td>
<td>(29 to 49)</td>
</tr>
<tr>
<td>Indiana</td>
<td>2,076 (1,602 to 2,772)</td>
<td>2,957 (2,087 to 3,562)</td>
<td>3,460 (2,335 to 4,207)</td>
<td>.67</td>
<td>(.34 to 1.04)</td>
<td>.17</td>
<td>(.03 to .31)</td>
<td>.33</td>
<td>(26 to 45)</td>
<td>.39</td>
<td>(28 to 47)</td>
</tr>
<tr>
<td>Iowa</td>
<td>959 (752 to 1,512)</td>
<td>1,119 (898 to 1,733)</td>
<td>1,293 (1,032 to 1,976)</td>
<td>.36</td>
<td>(.18 to .56)</td>
<td>.16</td>
<td>(.04 to .3)</td>
<td>.27</td>
<td>(21 to 44)</td>
<td>.29</td>
<td>(23 to 44)</td>
</tr>
<tr>
<td>Kansas</td>
<td>890 (729 to 1,278)</td>
<td>1,209 (897 to 1,503)</td>
<td>1,394 (1,021 to 1,788)</td>
<td>.58</td>
<td>(.23 to .96)</td>
<td>.15</td>
<td>(0 to .32)</td>
<td>.31</td>
<td>(25 to 44)</td>
<td>.36</td>
<td>(26 to 45)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1,341 (1,073 to 1,842)</td>
<td>1,964 (1,384 to 2,356)</td>
<td>2,357 (1,633 to 2,839)</td>
<td>.77</td>
<td>(.42 to 1.17)</td>
<td>.2</td>
<td>(.08 to .34)</td>
<td>.32</td>
<td>(26 to 44)</td>
<td>.38</td>
<td>(27 to 47)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>1,611 (1,197 to 2,040)</td>
<td>2,150 (1,430 to 2,516)</td>
<td>2,587 (1,733 to 3,139)</td>
<td>.61</td>
<td>(.33 to .88)</td>
<td>.21</td>
<td>(.09 to .34)</td>
<td>.37</td>
<td>(28 to 47)</td>
<td>.43</td>
<td>(29 to 50)</td>
</tr>
<tr>
<td>Maine</td>
<td>471 (365 to 634)</td>
<td>640 (471 to 810)</td>
<td>743 (554 to 949)</td>
<td>.58</td>
<td>(.36 to .81)</td>
<td>.16</td>
<td>(.05 to .29)</td>
<td>.33</td>
<td>(26 to 44)</td>
<td>.35</td>
<td>(26 to 45)</td>
</tr>
<tr>
<td>Maryland</td>
<td>1,875 (1,456 to 2,518)</td>
<td>2,544 (1,982 to 3,362)</td>
<td>2,999 (2,381 to 4,120)</td>
<td>.6</td>
<td>(.42 to .8)</td>
<td>.18</td>
<td>(.04 to .32)</td>
<td>.37</td>
<td>(29 to 50)</td>
<td>.38</td>
<td>(30 to 51)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>2,213 (1,824 to 3,220)</td>
<td>2,645 (2,204 to 3,777)</td>
<td>3,004 (2,413 to 4,374)</td>
<td>.36</td>
<td>(.21 to .52)</td>
<td>.13</td>
<td>(.01 to .25)</td>
<td>.31</td>
<td>(26 to 45)</td>
<td>.32</td>
<td>(27 to 46)</td>
</tr>
<tr>
<td>State</td>
<td>Mean (95% CI)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td>3,525 (2,695 to 4,681)</td>
<td>4,733 (3,465 to 5,879)</td>
<td>5,445 (4,021 to 6,773)</td>
<td>.55 (.36 to .76)</td>
<td>.15 (.05 to .26)</td>
<td>35 (27 to 46)</td>
<td>39 (28 to 49)</td>
<td>41 (30 to 51)</td>
<td>.16 (.02 to .31)</td>
<td>.05 (-.05 to .15)</td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>1,448 (1,195 to 2,113)</td>
<td>1,917 (1,574 to 2,702)</td>
<td>2,316 (1,874 to 3,279)</td>
<td>.61 (.41 to .85)</td>
<td>.21 (.08 to .34)</td>
<td>29 (24 to 43)</td>
<td>31 (25 to 44)</td>
<td>31 (25 to 45)</td>
<td>.15 (.05 to .26)</td>
<td>.16 (.03 to .15)</td>
<td></td>
</tr>
<tr>
<td>Mississippi</td>
<td>923 (737 to 1,291)</td>
<td>1,310 (947 to 1,622)</td>
<td>1,531 (1,127 to 1,938)</td>
<td>.67 (.35 to 1.01)</td>
<td>.17 (.02 to .33)</td>
<td>33 (26 to 46)</td>
<td>39 (28 to 48)</td>
<td>41 (30 to 51)</td>
<td>.25 (0.0 to .5)</td>
<td>.05 (-.09 to .2)</td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>1,917 (1,557 to 2,737)</td>
<td>2,655 (1,977 to 3,343)</td>
<td>3,082 (2,332 to 3,962)</td>
<td>.62 (.33 to .93)</td>
<td>.16 (.05 to .28)</td>
<td>32 (26 to 45)</td>
<td>37 (27 to 47)</td>
<td>38 (29 to 49)</td>
<td>.21 (-.01 to .43)</td>
<td>.04 (-.06 to .14)</td>
<td></td>
</tr>
<tr>
<td>Montana</td>
<td>368 (240 to 437)</td>
<td>552 (325 to 671)</td>
<td>668 (395 to 846)</td>
<td>.81 (.52 to 1.15)</td>
<td>.21 (.05 to .39)</td>
<td>40 (26 to 47)</td>
<td>44 (26 to 54)</td>
<td>45 (27 to 58)</td>
<td>.13 (-.07 to .35)</td>
<td>.03 (-.1 to .17)</td>
<td></td>
</tr>
<tr>
<td>Nebraska</td>
<td>657 (496 to 826)</td>
<td>875 (594 to 1,025)</td>
<td>1,012 (693 to 1,212)</td>
<td>.54 (.29 to .81)</td>
<td>.16 (.04 to .28)</td>
<td>35 (27 to 44)</td>
<td>39 (27 to 46)</td>
<td>41 (28 to 49)</td>
<td>.16 (-.02 to .36)</td>
<td>.03 (-.08 to .14)</td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>480 (362 to 601)</td>
<td>1,173 (821 to 1,411)</td>
<td>1,534 (1,150 to 1,941)</td>
<td>2.2 (1.82 to 2.58)</td>
<td>.31 (.13 to .49)</td>
<td>38 (29 to 48)</td>
<td>41 (29 to 50)</td>
<td>41 (31 to 52)</td>
<td>.07 (-.06 to .19)</td>
<td>0 (-.14 to .13)</td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>404 (316 to 537)</td>
<td>572 (434 to 723)</td>
<td>703 (535 to 914)</td>
<td>.75 (.52 to .98)</td>
<td>.23 (.11 to .36)</td>
<td>34 (26 to 45)</td>
<td>35 (27 to 44)</td>
<td>36 (28 to 47)</td>
<td>.07 (-.06 to .21)</td>
<td>.04 (-.06 to .15)</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>3,458 (2,552 to 4,271)</td>
<td>4,299 (3,046 to 5,235)</td>
<td>4,830 (3,514 to 5,958)</td>
<td>.4 (.23 to .58)</td>
<td>.13 (-.01 to .26)</td>
<td>38 (28 to 47)</td>
<td>40 (28 to 49)</td>
<td>40 (29 to 50)</td>
<td>.05 (-.08 to .18)</td>
<td>.01 (-.11 to .13)</td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>532 (400 to 678)</td>
<td>873 (617 to 1,057)</td>
<td>1,081 (746 to 1,335)</td>
<td>1.03 (.68 to 1.4)</td>
<td>.24 (.08 to .41)</td>
<td>35 (26 to 44)</td>
<td>38 (26 to 46)</td>
<td>40 (27 to 49)</td>
<td>.15 (-.08 to .38)</td>
<td>.06 (-.09 to .21)</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>7,571 (5,813 to 9,823)</td>
<td>8,593 (6,685 to 11,332)</td>
<td>9,700 (7,616 to 13,312)</td>
<td>.28 (-1.0 to .5)</td>
<td>.13 (-.01 to .29)</td>
<td>37 (28 to 48)</td>
<td>36 (28 to 48)</td>
<td>37 (29 to 51)</td>
<td>.01 (-.15 to .2)</td>
<td>.01 (-.11 to .16)</td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>2,502 (1,944 to 3,340)</td>
<td>3,928 (2,839 to 4,850)</td>
<td>5,043 (3,753 to 6,368)</td>
<td>1.02 (.76 to 1.29)</td>
<td>.29 (.15 to .42)</td>
<td>34 (27 to 46)</td>
<td>37 (27 to 46)</td>
<td>38 (28 to 48)</td>
<td>.12 (-.02 to .27)</td>
<td>.03 (-.07 to .14)</td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>250 (197 to 334)</td>
<td>307 (227 to 377)</td>
<td>371 (266 to 454)</td>
<td>.49 (.23 to .77)</td>
<td>.21 (.07 to .35)</td>
<td>33 (26 to 44)</td>
<td>36 (27 to 44)</td>
<td>38 (28 to 47)</td>
<td>.17 (-.04 to .4)</td>
<td>.06 (-.06 to .21)</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Median (95% CI)</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Ohio</td>
<td>4,247 (3,287 to 5,622)</td>
<td>5,747 (4,079 to 6,867)</td>
<td>6,602 (4,574 to 7,891)</td>
<td>.56 (.27 to .83)</td>
<td>.15 (.04 to .27)</td>
<td>34 (27 to 46)</td>
<td>40 (29 to 48)</td>
<td>42 (29 to 50)</td>
<td>.23 (0 to .44)</td>
<td>.05 (-.04 to .16)</td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1,166 (949 to 1,636)</td>
<td>1,727 (1,193 to 2,070)</td>
<td>2,087 (1,452 to 2,533)</td>
<td>.81 (.4 to 1.22)</td>
<td>.21 (.1 to .34)</td>
<td>32 (26 to 45)</td>
<td>40 (28 to 48)</td>
<td>43 (30 to 51)</td>
<td>.34 (.03 to .64)</td>
<td>.07 (-.03 to .19)</td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>1,216 (860 to 1,472)</td>
<td>1,767 (1,230 to 2,074)</td>
<td>2,181 (1,535 to 2,613)</td>
<td>.79 (.59 to 1.02)</td>
<td>.24 (.11 to .36)</td>
<td>36 (26 to 44)</td>
<td>38 (26 to 44)</td>
<td>38 (27 to 46)</td>
<td>.06 (-.06 to .19)</td>
<td>.02 (-.08 to .13)</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>5,816 (4,004 to 6,904)</td>
<td>7,154 (4,614 to 8,432)</td>
<td>7,981 (5,284 to 9,576)</td>
<td>.37 (.21 to .54)</td>
<td>.12 (.01 to .23)</td>
<td>39 (27 to 46)</td>
<td>42 (28 to 50)</td>
<td>43 (29 to 52)</td>
<td>.11 (-.01 to .25)</td>
<td>.03 (-.07 to .13)</td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>387 (319 to 555)</td>
<td>460 (372 to 629)</td>
<td>502 (403 to 703)</td>
<td>.31 (.11 to .54)</td>
<td>.09 (-.05 to .24)</td>
<td>32 (26 to 45)</td>
<td>33 (27 to 46)</td>
<td>34 (27 to 47)</td>
<td>.07 (-.08 to .26)</td>
<td>.03 (-.11 to .17)</td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>1,296 (984 to 1,678)</td>
<td>2,068 (1,427 to 2,489)</td>
<td>2,666 (1,828 to 3,265)</td>
<td>1.06 (.73 to 1.41)</td>
<td>.29 (.14 to .47)</td>
<td>35 (27 to 46)</td>
<td>39 (27 to 48)</td>
<td>41 (28 to 50)</td>
<td>.16 (-.04 to .36)</td>
<td>.03 (-.09 to .17)</td>
<td></td>
</tr>
<tr>
<td>South Dakota</td>
<td>281 (214 to 358)</td>
<td>371 (264 to 445)</td>
<td>451 (323 to 550)</td>
<td>.61 (.34 to .9)</td>
<td>.22 (.08 to .37)</td>
<td>34 (26 to 43)</td>
<td>37 (26 to 44)</td>
<td>39 (28 to 48)</td>
<td>.16 (-.04 to .39)</td>
<td>.06 (-.06 to .2)</td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>1,840 (1,447 to 2,520)</td>
<td>2,867 (2,045 to 3,508)</td>
<td>3,560 (2,548 to 4,333)</td>
<td>.95 (.58 to 1.31)</td>
<td>.24 (.12 to .37)</td>
<td>33 (26 to 46)</td>
<td>39 (28 to 48)</td>
<td>41 (30 to 50)</td>
<td>.25 (.01 to .48)</td>
<td>.06 (-.05 to .17)</td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>5,373 (4,384 to 7,570)</td>
<td>8,586 (6,739 to 11,246)</td>
<td>11,337 (8,906 to 15,481)</td>
<td>1.12 (.85 to 1.42)</td>
<td>.32 (.19 to .46)</td>
<td>32 (26 to 45)</td>
<td>35 (27 to 46)</td>
<td>36 (28 to 49)</td>
<td>.13 (-.02 to .28)</td>
<td>.03 (-.08 to .13)</td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>590 (395 to 692)</td>
<td>1,045 (637 to 1,263)</td>
<td>1,379 (848 to 1,705)</td>
<td>1.33 (1 to 1.67)</td>
<td>.32 (.19 to .47)</td>
<td>40 (27 to 47)</td>
<td>44 (27 to 53)</td>
<td>45 (27 to 55)</td>
<td>.12 (-.04 to .29)</td>
<td>.02 (-.09 to .13)</td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>207 (161 to 273)</td>
<td>275 (209 to 360)</td>
<td>321 (244 to 424)</td>
<td>.56 (.39 to .76)</td>
<td>.17 (.05 to .3)</td>
<td>34 (26 to 44)</td>
<td>34 (26 to 45)</td>
<td>34 (26 to 46)</td>
<td>.03 (-.09 to .15)</td>
<td>.02 (-.09 to .14)</td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>2,233 (1,733 to 2,986)</td>
<td>3,288 (2,472 to 4,189)</td>
<td>3,962 (3,066 to 5,127)</td>
<td>.78 (.6 to .99)</td>
<td>.21 (.08 to .33)</td>
<td>35 (27 to 46)</td>
<td>37 (28 to 47)</td>
<td>37 (29 to 48)</td>
<td>.07 (-.04 to .19)</td>
<td>0 (.1 to .11)</td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>1,951 (1,421 to 2,376)</td>
<td>2,880 (2,059 to 3,436)</td>
<td>3,613 (2,573 to 4,454)</td>
<td>.85 (.63 to 1.08)</td>
<td>.26 (.13 to .38)</td>
<td>37 (27 to 45)</td>
<td>38 (27 to 45)</td>
<td>38 (28 to 47)</td>
<td>.04 (-.09 to .16)</td>
<td>.01 (-.09 to .12)</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>Hypertensive heart disease</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>8,493 (5,951 to 10,286)</td>
<td></td>
</tr>
<tr>
<td>Alaska</td>
<td>438 (359 to 656)</td>
<td></td>
</tr>
<tr>
<td>Arizona</td>
<td>4,498 (3,612 to 7,057)</td>
<td></td>
</tr>
<tr>
<td>Arkansas</td>
<td>3,884 (3,176 to 5,815)</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>49,366 (32,767 to 57,421)</td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>3,393 (2,729 to 5,551)</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>4,928 (3,954 to 6,879)</td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>1,466 (946 to 1,704)</td>
<td></td>
</tr>
<tr>
<td>District of Columbia</td>
<td>4,192 (1,433 to 5,546)</td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>2016 (95% CI)</th>
<th>1990 (95% CI)</th>
<th>DPOY 1990-2016 (95% CI)</th>
<th>DPOY 1990-2016 Rate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>29,840 (19,872 to 35,266)</td>
<td>44,646 (27,989 to 52,823)</td>
<td>55,149 (32,358 to 69,041)</td>
<td>.84 (.51 to 1.16)</td>
</tr>
<tr>
<td>Georgia</td>
<td>12,874 (8,438 to 15,600)</td>
<td>24,599 (15,233 to 30,229)</td>
<td>33,795 (16,117 to 44,300)</td>
<td>1.59 (.69 to 2.33)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>1,285 (1,078 to 1,920)</td>
<td>1,761 (1,460 to 2,617)</td>
<td>2,157 (1,749 to 3,148)</td>
<td>.68 (.48 to .88)</td>
</tr>
<tr>
<td>Idaho</td>
<td>1,084 (852 to 1,755)</td>
<td>1,868 (1,530 to 2,751)</td>
<td>2,495 (2,017 to 3,584)</td>
<td>1.35 (.81 to 1.85)</td>
</tr>
<tr>
<td>Illinois</td>
<td>23,231 (15,774 to 27,127)</td>
<td>29,784 (17,705 to 35,530)</td>
<td>35,513 (18,720 to 45,011)</td>
<td>.52 (.06 to .87)</td>
</tr>
<tr>
<td>Indiana</td>
<td>7,609 (6,134 to 11,865)</td>
<td>10,603 (8,814 to 15,281)</td>
<td>12,880 (10,101 to 17,895)</td>
<td>.72 (.35 to 1.05)</td>
</tr>
<tr>
<td>Iowa</td>
<td>4,184 (3,425 to 5,943)</td>
<td>4,563 (3,741 to 6,493)</td>
<td>5,243 (4,115 to 7,205)</td>
<td>.26 (.09 to .42)</td>
</tr>
<tr>
<td>Kansas</td>
<td>3,006 (2,344 to 4,892)</td>
<td>3,591 (2,798 to 6,008)</td>
<td>3,982 (2,981 to 6,568)</td>
<td>.32 (.14 to .53)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>5,750 (4,726 to 8,399)</td>
<td>9,145 (6,893 to 11,728)</td>
<td>11,859 (7,889 to 14,135)</td>
<td>1.1 (.41 to 1.56)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>11,694 (6,227 to 14,185)</td>
<td>15,362 (7,611 to 18,913)</td>
<td>18,907 (8,853 to 24,263)</td>
<td>.6 (.31 to .84)</td>
</tr>
<tr>
<td>Maine</td>
<td>1,504 (1,186 to 2,447)</td>
<td>1,840 (1,459 to 3,004)</td>
<td>2,105 (1,644 to 3,442)</td>
<td>.41 (.26 to .57)</td>
</tr>
<tr>
<td>Maryland</td>
<td>11,488 (6,630 to 13,628)</td>
<td>16,377 (8,566 to 20,248)</td>
<td>19,517 (9,535 to 25,082)</td>
<td>.67 (.26 to .99)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>7,727 (6,404 to 12,080)</td>
<td>9,125 (7,554 to 12,761)</td>
<td>10,323 (8,110 to 14,306)</td>
<td>.36 (.05 to .59)</td>
</tr>
<tr>
<td>State</td>
<td>Year 1 (Low to High)</td>
<td>Year 2 (Low to High)</td>
<td>Year 3 (Low to High)</td>
<td>2015</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>Michigan</td>
<td>15,735 (12,073 to 20,486)</td>
<td>23,734 (15,318 to 27,473)</td>
<td>29,039 (17,358 to 35,280)</td>
<td>.85 (.3 to 1.28)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>4,086 (2,992 to 7,343)</td>
<td>4,098 (3,647 to 8,901)</td>
<td>5,723 (4,177 to 10,405)</td>
<td>.41 (.25 to .58)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>6,718 (4,159 to 7,917)</td>
<td>11,422 (5,375 to 14,263)</td>
<td>13,507 (6,100 to 17,747)</td>
<td>.98 (.38 to 1.44)</td>
</tr>
<tr>
<td>Missouri</td>
<td>8,978 (6,926 to 11,810)</td>
<td>11,629 (8,757 to 14,760)</td>
<td>13,664 (9,793 to 16,994)</td>
<td>.53 (.29 to .72)</td>
</tr>
<tr>
<td>Montana</td>
<td>946 (733 to 1,568)</td>
<td>1,381 (1,123 to 2,147)</td>
<td>1,644 (1,302 to 2,470)</td>
<td>.77 (.42 to 1.1)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>1,971 (1,556 to 3,227)</td>
<td>2,365 (1,941 to 3,638)</td>
<td>2,614 (2,096 to 4,159)</td>
<td>.34 (.17 to .5)</td>
</tr>
<tr>
<td>Nevada</td>
<td>3,651 (1,669 to 4,676)</td>
<td>8,253 (3,663 to 10,598)</td>
<td>10,813 (4,736 to 14,384)</td>
<td>1.94 (1.53 to 2.33)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1,402 (1,159 to 2,058)</td>
<td>1,926 (1,492 to 2,552)</td>
<td>2,370 (1,773 to 3,133)</td>
<td>.7 (.37 to 1)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>14,727 (10,632 to 18,257)</td>
<td>15,855 (11,545 to 19,244)</td>
<td>17,803 (11,990 to 21,985)</td>
<td>.21 (-.02 to .41)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>2,013 (1,653 to 2,862)</td>
<td>3,473 (2,673 to 4,463)</td>
<td>4,397 (3,173 to 5,369)</td>
<td>1.21 (.65 to 1.67)</td>
</tr>
<tr>
<td>New York</td>
<td>39,888 (26,021 to 46,622)</td>
<td>47,026 (26,274 to 57,468)</td>
<td>53,275 (27,763 to 68,942)</td>
<td>.32 (-.09 to .64)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>12,238 (8,904 to 15,004)</td>
<td>16,933 (12,771 to 21,451)</td>
<td>22,155 (15,565 to 27,246)</td>
<td>.81 (.59 to 1.05)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>778 (614 to 1,252)</td>
<td>900 (750 to 1,364)</td>
<td>1,067 (866 to 1,580)</td>
<td>.39 (.16 to .63)</td>
</tr>
<tr>
<td>State</td>
<td>Mean (95% CI)</td>
<td>Mean (95% CI)</td>
<td>Mean (95% CI)</td>
<td>Mean (95% CI)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Ohio</td>
<td>20,682 (14,644 to 26,618)</td>
<td>28,831 (18,441 to 33,468)</td>
<td>33,422 (20,229 to 40,281)</td>
<td>.61 (.26 to .92)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>4,586 (3,750 to 7,101)</td>
<td>7,548 (5,777 to 10,135)</td>
<td>11,561 (6,956 to 13,718)</td>
<td>1.62 (.41 to 2.41)</td>
</tr>
<tr>
<td>Oregon</td>
<td>3,629 (2,922 to 5,810)</td>
<td>4,701 (3,744 to 7,606)</td>
<td>5,291 (4,092 to 6,839)</td>
<td>.45 (.28 to .67)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>20,198 (16,562 to 28,638)</td>
<td>22,146 (18,660 to 31,405)</td>
<td>26,530 (20,233 to 33,933)</td>
<td>.33 (.08 to .53)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1,442 (1,182 to 2,241)</td>
<td>1,608 (1,346 to 2,339)</td>
<td>1,868 (1,458 to 2,574)</td>
<td>.31 (.03 to .57)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>6,498 (4,706 to 8,240)</td>
<td>9,176 (6,837 to 12,136)</td>
<td>11,765 (8,653 to 15,408)</td>
<td>.81 (.59 to 1.1)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>787 (567 to 1,407)</td>
<td>992 (756 to 1,680)</td>
<td>1,228 (947 to 1,987)</td>
<td>.6 (.29 to .9)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>10,634 (6,994 to 12,369)</td>
<td>16,960 (10,150 to 19,848)</td>
<td>21,725 (12,083 to 26,391)</td>
<td>1.03 (.54 to 1.35)</td>
</tr>
<tr>
<td>Texas</td>
<td>29,013 (19,810 to 34,046)</td>
<td>47,573 (29,605 to 55,604)</td>
<td>62,925 (36,392 to 76,477)</td>
<td>1.16 (.74 to 1.5)</td>
</tr>
<tr>
<td>Utah</td>
<td>1,705 (1,359 to 2,364)</td>
<td>2,703 (2,196 to 3,760)</td>
<td>3,588 (2,867 to 4,950)</td>
<td>1.11 (.89 to 1.34)</td>
</tr>
<tr>
<td>Vermont</td>
<td>831 (643 to 1,118)</td>
<td>1,017 (748 to 1,268)</td>
<td>1,225 (850 to 1,483)</td>
<td>.48 (.22 to .71)</td>
</tr>
<tr>
<td>Virginia</td>
<td>8,629 (6,854 to 12,275)</td>
<td>11,444 (9,459 to 16,302)</td>
<td>13,787 (10,993 to 18,846)</td>
<td>.61 (.38 to .81)</td>
</tr>
<tr>
<td>Washington</td>
<td>6,144 (5,065 to 8,880)</td>
<td>10,043 (7,187 to 12,358)</td>
<td>11,858 (8,541 to 14,892)</td>
<td>.95 (5 to 1.33)</td>
</tr>
<tr>
<td>West Virginia</td>
<td>3,316 (2,655 to 4,640)</td>
<td>3,738 (3,029 to 5,760)</td>
<td>4,257 (3,452 to 6,479)</td>
<td>.28 (.12 to .52)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>6,730 (5,543 to 9,909)</td>
<td>8,759 (6,966 to 11,757)</td>
<td>10,481 (8,112 to 13,772)</td>
<td>.57 (.26 to .83)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>466 (360 to 788)</td>
<td>738 (597 to 1,147)</td>
<td>881 (699 to 1,337)</td>
<td>.93 (.55 to 1.26)</td>
</tr>
</tbody>
</table>

Intracerebral Hemorrhage

<p>| Alabama | 22,664 (21,226 to 24,234) | 30,315 (28,317 to 32,329) | 33,326 (29,597 to 37,421) | .47 (.29 to .67) | .1 (-.03 to .25) | 510 (478 to 546) | 531 (496 to 567) | 513 (456 to 577) | .01 (-.12 to .15) | -.03 (-.15 to .1) |
| Alaska | 1,279 (1,189 to 1,380) | 1,991 (1,848 to 2,148) | 2,382 (2,097 to 2,690) | .86 (.62 to 1.14) | .2 (.05 to .36) | 335 (311 to 364) | 311 (288 to 334) | 301 (266 to 340) | -.1 (-.21 to .03) | -.03 (-.14 to .09) |
| Arizona | 11,835 (10,973 to 12,733) | 19,714 (18,413 to 21,122) | 23,187 (20,848 to 25,585) | .96 (.75 to 1.19) | .18 (.06 to .31) | 297 (276 to 319) | 275 (257 to 294) | 249 (224 to 275) | -.16 (-.25 to -.06) | -.09 (-.18 to 0) |
| Arkansas | 12,551 (11,734 to 13,370) | 15,950 (14,993 to 16,935) | 17,784 (16,149 to 19,637) | .42 (.28 to .57) | .12 (.01 to .22) | 461 (431 to 491) | 458 (430 to 485) | 452 (410 to 498) | -.02 (-.11 to .09) | -.01 (-.11 to .08) |
| California | 106,395 (98,500 to 114,773) | 122,217 (113,875 to 130,687) | 131,266 (117,461 to 145,864) | .24 (.09 to .39) | .07 (.03 to .2) | 361 (335 to 388) | 304 (283 to 325) | 265 (237 to 295) | -.27 (-.35 to -.17) | -.13 (-.22 to -.03) |
| Colorado | 9,064 (8,447 to 9,708) | 13,431 (12,443 to 14,393) | 16,224 (14,731 to 17,864) | .79 (.61 to 1.01) | .21 (.1 to .34) | 279 (260 to 299) | 255 (237 to 274) | 235 (213 to 257) | -.16 (-.24 to -.06) | -.08 (-.16 to .02) |
| Connecticut | 11,166 (10,324 to 11,972) | 10,824 (9,954 to 11,695) | 11,363 (10,010 to 12,774) | .02 (-.1 to .16) | .05 (-.07 to .18) | 292 (271 to 313) | 235 (216 to 255) | 221 (194 to 248) | -.24 (-.33 to -.14) | -.06 (-.17 to .05) |
| Delaware | 2,495 (2,312 to 2,685) | 3,291 (3,067 to 3,538) | 3,880 (3,533 to 4,210) | .56 (.41 to .73) | .18 (.07 to .3) | 345 (320 to 371) | 302 (282 to 324) | 284 (259 to 308) | -.18 (-.25 to -.09) | -.06 (-.15 to .03) |
| District of Columbia | 4,715 (4,139 to 5,674) | 2,813 (2,493 to 3,292) | 2,381 (2,042 to 2,837) | -.49 (-.56 to -.42) | -.15 (-.25 to -.04) | 716 (631 to 863) | 430 (381 to 503) | 314 (269 to 375) | -.56 (-.62 to -.5) | -.27 (-.35 to -.17) |</p>
<table>
<thead>
<tr>
<th>State</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
<th>Value 8</th>
<th>Value 9</th>
<th>Value 10</th>
<th>Value 11</th>
<th>Value 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>55,379</td>
<td>73,508</td>
<td>84,401</td>
<td>.53</td>
<td>.15</td>
<td>342</td>
<td>.09</td>
<td>456</td>
<td>.16</td>
<td>-19</td>
<td>-19</td>
<td>-07</td>
</tr>
<tr>
<td>Georgia</td>
<td>32,925</td>
<td>45,489</td>
<td>54,258</td>
<td>.65</td>
<td>.19</td>
<td>514</td>
<td>.35</td>
<td>430</td>
<td>.16</td>
<td>-06</td>
<td>-06</td>
<td>-06</td>
</tr>
<tr>
<td>Hawaii</td>
<td>4,557</td>
<td>5,640</td>
<td>6,166</td>
<td>.35</td>
<td>.09</td>
<td>396</td>
<td>.25</td>
<td>312</td>
<td>-21</td>
<td>-07</td>
<td>-07</td>
<td>-07</td>
</tr>
<tr>
<td>Idaho</td>
<td>2,960</td>
<td>4,575</td>
<td>5,856</td>
<td>.98</td>
<td>.28</td>
<td>280</td>
<td>.25</td>
<td>271</td>
<td>-.03</td>
<td>0</td>
<td>-11</td>
<td>-14</td>
</tr>
<tr>
<td>Illinois</td>
<td>48,513</td>
<td>47,135</td>
<td>49,287</td>
<td>.02</td>
<td>.05</td>
<td>390</td>
<td>.16</td>
<td>291</td>
<td>-.25</td>
<td>-07</td>
<td>-07</td>
<td>-07</td>
</tr>
<tr>
<td>Indiana</td>
<td>22,082</td>
<td>25,919</td>
<td>29,946</td>
<td>.36</td>
<td>.16</td>
<td>362</td>
<td>.34</td>
<td>346</td>
<td>-.04</td>
<td>-.01</td>
<td>-.13</td>
<td>-.13</td>
</tr>
<tr>
<td>Iowa</td>
<td>9,389</td>
<td>10,672</td>
<td>11,720</td>
<td>.25</td>
<td>.1</td>
<td>275</td>
<td>.30</td>
<td>266</td>
<td>-.03</td>
<td>-.01</td>
<td>-.13</td>
<td>-.13</td>
</tr>
<tr>
<td>Kansas</td>
<td>8,508</td>
<td>10,678</td>
<td>11,764</td>
<td>.38</td>
<td>.1</td>
<td>304</td>
<td>.11</td>
<td>308</td>
<td>.01</td>
<td>-.02</td>
<td>-.14</td>
<td>-.14</td>
</tr>
<tr>
<td>Kentucky</td>
<td>15,158</td>
<td>18,870</td>
<td>22,048</td>
<td>.46</td>
<td>.17</td>
<td>373</td>
<td>.36</td>
<td>373</td>
<td>0</td>
<td>.02</td>
<td>-.07</td>
<td>-.07</td>
</tr>
<tr>
<td>Louisiana</td>
<td>21,097</td>
<td>23,949</td>
<td>26,722</td>
<td>.27</td>
<td>.12</td>
<td>498</td>
<td>.12</td>
<td>450</td>
<td>-.09</td>
<td>-.04</td>
<td>-.13</td>
<td>-.13</td>
</tr>
<tr>
<td>Maine</td>
<td>4,015</td>
<td>4,830</td>
<td>5,473</td>
<td>.36</td>
<td>.13</td>
<td>283</td>
<td>.19</td>
<td>283</td>
<td>-.09</td>
<td>-.02</td>
<td>-.11</td>
<td>-.11</td>
</tr>
<tr>
<td>Maryland</td>
<td>19,073</td>
<td>21,083</td>
<td>22,586</td>
<td>.19</td>
<td>.07</td>
<td>380</td>
<td>.37</td>
<td>283</td>
<td>-.25</td>
<td>-.17</td>
<td>-.17</td>
<td>-.17</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>20,282</td>
<td>19,842</td>
<td>21,801</td>
<td>.08</td>
<td>.1</td>
<td>293</td>
<td>.09</td>
<td>227</td>
<td>-.23</td>
<td>-.05</td>
<td>-.16</td>
<td>-.16</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
|---------------|-------------------|-------------------|-------------------|--------------------|--------------------|

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
| State | Population
<table>
<thead>
<tr>
<th></th>
<th>(95% CI)</th>
</tr>
</thead>
</table>
| Ohio | 41,531
 | (38,927 to 44,214) |
| Oklahoma | 13,238
 | (12,367 to 14,052) |
| Oregon | 10,517
 | (9,805 to 11,209) |
| Pennsylvania| 49,683
 | (46,436 to 52,913) |
| Rhode Island| 3,428
 | (3,151 to 3,714) |
| South Carolina| 21,018
 | (19,614 to 22,508) |
| South Dakota| 2,377
 | (2,184 to 2,560) |
| Tennessee | 23,890
 | (22,413 to 25,527) |
| Texas | 63,820
 | (59,443 to 68,760) |
| Utah | 4,093
 | (3,820 to 4,390) |
| Vermont | 1,621
 | (1,504 to 1,742) |
| Virginia | 24,565
 | (23,079 to 26,199) |
| Washington | 15,850
 | (14,783 to 16,941) |

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>State</th>
<th>Total Deaths (95% CI)</th>
<th>Deaths attributable to CHD (95% CI)</th>
<th>Deaths attributable to CHD (% of total deaths)</th>
<th>Deaths attributable to CHD (% of total CHD deaths)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Virginia</td>
<td>7,854 (7,310 to 8,395)</td>
<td>.31 (.18 to .45)</td>
<td>.13 (.03 to .24)</td>
<td>.362 (337 to 387)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>16,976 (15,812 to 18,083)</td>
<td>.3 (.19 to .44)</td>
<td>.14 (0.04 to .24)</td>
<td>.309 (288 to 329)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>1,305 (1,207 to 1,405)</td>
<td>.53 (.35 to .73)</td>
<td>.11 (-.01 to .25)</td>
<td>.290 (269 to 313)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>178,117 (169,726 to 186,437)</td>
<td>.07 (-.18 to .04)</td>
<td>.04 (-.08 to .17)</td>
<td>.3778 (3,596 to 3,959)</td>
</tr>
<tr>
<td>Alaska</td>
<td>8,339 (7,859 to 8,854)</td>
<td>.44 (24 to .65)</td>
<td>.23 (-0.06 to .43)</td>
<td>.2936 (2,780 to 3,109)</td>
</tr>
<tr>
<td>Arizona</td>
<td>124,129 (118,866 to 129,460)</td>
<td>.19 (.09 to .31)</td>
<td>.09 (-.01 to .19)</td>
<td>.2990 (2,861 to 3,123)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>114,818 (110,185 to 119,875)</td>
<td>-.05 (-.14 to .04)</td>
<td>.05 (-.04 to .15)</td>
<td>.3817 (3,659 to 3,988)</td>
</tr>
<tr>
<td>California</td>
<td>877,887 (833,450 to 921,783)</td>
<td>-.16 (-.25 to -.06)</td>
<td>0 (-1 to .12)</td>
<td>.2944 (2,840 to 3,147)</td>
</tr>
<tr>
<td>Colorado</td>
<td>83,199 (79,402 to 86,706)</td>
<td>.03 (-.06 to .13)</td>
<td>.11 (.02 to .22)</td>
<td>.2607 (2,480 to 2,715)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>118,689 (112,874 to 124,225)</td>
<td>-.39 (-.45 to -.31)</td>
<td>-.07 (-.17 to .03)</td>
<td>.2920 (2,772 to 3,057)</td>
</tr>
<tr>
<td>Delaware</td>
<td>26,392 (25,300 to 27,630)</td>
<td>-.07 (-.15 to .01)</td>
<td>.03 (-.05 to .11)</td>
<td>3,559 (3,410 to 3,725)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>25,769 (23,416 to 29,471)</td>
<td>-.39 (-.46 to -.32)</td>
<td>-.18 (-.27 to .08)</td>
<td>3,771 (3,423 to 4,326)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
| State | Value 1 | Value 2 | Value 3 | Value 4 | Value 5 | Value 6 | Value 7 | Value 8 | Value 9 | Value 10 | Value 11 | Value 12 | Value 13 | Value 14 | Value 15 | Value 16 | Value 17 | Value 18 | Value 19 | Value 20 | Value 21 | Value 22 | Value 23 | Value 24 | Value 25 | Value 26 | Value 27 | Value 28 | Value 29 | Value 30 |
|------------|
| Florida | 587,490 | 524,421 | 546,526 | -0.07 | -0.04 | 3,049 | 1,899 | 1,565 | -0.49 | -0.18 | -1.58 | -1.48 | -1.31 | -1.44 | -0.48 | -0.14 | -0.24 | -0.36 | -0.49 | -0.55 | -0.61 | -0.69 | -0.77 | -0.85 | -0.93 | -1.01 | -1.09 |
| Georgia | 235,844 | 222,498 | 249,265 | -0.06 | -0.12 | 3,754 | 2,259 | 1,912 | -0.49 | -1.15 | -1.10 | -1.34 | -1.38 | -0.44 | -0.48 | -0.19 | -0.24 | -0.31 | -0.36 | -0.36 | -0.37 | -0.38 | -0.39 | -0.40 | -0.41 | -0.42 | -0.43 |
| Hawaii | 26,920 | 26,199 | 28,310 | -0.05 | -0.08 | 2,342 | 1,488 | 1,318 | -0.44 | -0.11 | -0.15 | -0.18 | -0.19 | -0.17 | -0.15 | -0.14 | -0.12 | -0.10 | -0.08 | -0.06 | -0.04 | -0.02 | -0.00 | -0.00 | -0.00 | -0.00 |
| Idaho | 29,662 | 28,703 | 32,677 | -0.1 | -0.14 | 2,697 | 1,639 | 1,412 | -0.48 | -0.14 | -0.19 | -0.12 | -0.11 | -0.10 | -0.09 | -0.07 | -0.04 | -0.02 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 |
| Illinois | 475,688 | 329,657 | 309,473 | -0.35 | -0.06 | 3,631 | 2,108 | 1,708 | -0.53 | -0.19 | -0.25 | -0.12 | -0.11 | -0.10 | -0.09 | -0.07 | -0.04 | -0.02 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 |
| Indiana | 228,397 | 182,839 | 189,237 | -0.17 | 0.04 | 3,570 | 2,305 | 2,043 | -0.43 | -0.11 | -0.21 | -0.09 | -0.07 | -0.06 | -0.05 | -0.04 | -0.03 | -0.02 | -0.01 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 |
| Iowa | 117,393 | 80,939 | 80,516 | -0.31 | 0.00 | 3,095 | 1,886 | 1,680 | -0.46 | -0.19 | -0.23 | -0.12 | -0.11 | -0.10 | -0.09 | -0.07 | -0.05 | -0.03 | -0.01 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 |
| Kansas | 92,426 | 69,343 | 69,326 | -0.25 | 0.00 | 3,011 | 1,912 | 1,680 | -0.44 | -0.12 | -0.23 | -0.12 | -0.11 | -0.10 | -0.09 | -0.07 | -0.05 | -0.03 | -0.01 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 | -0.00 |
| Kentucky | 168,778 | 144,253 | 150,671 | -0.11 | 0.04 | 3,977 | 2,688 | 2,404 | -0.4 | -0.11 | -0.18 | -0.12 | -0.11 | -0.10 | -0.09 | -0.08 | -0.07 | -0.06 | -0.05 | -0.04 | -0.03 | -0.02 | -0.01 | -0.00 | -0.00 | -0.00 |
| Louisiana | 177,792 | 140,938 | 150,091 | -0.16 | 0.07 | 4,102 | 2,701 | 2,401 | -0.41 | -0.18 | -0.22 | -0.17 | -0.16 | -0.15 | -0.14 | -0.13 | -0.12 | -0.11 | -0.10 | -0.09 | -0.08 | -0.07 | -0.06 | -0.05 | -0.04 | -0.03 |
| Maine | 48,837 | 32,743 | 32,416 | -0.34 | -0.01 | 3,265 | 1,671 | 1,398 | -0.57 | -0.23 | -0.39 | -0.27 | -0.26 | -0.25 | -0.24 | -0.23 | -0.22 | -0.21 | -0.20 | -0.19 | -0.18 | -0.17 | -0.16 | -0.15 | -0.14 |
| Maryland | 160,880 | 139,370 | 137,841 | -0.14 | -0.01 | 3,260 | 2,031 | 1,625 | -0.5 | -0.26 | -0.39 | -0.30 | -0.29 | -0.28 | -0.27 | -0.26 | -0.25 | -0.24 | -0.23 | -0.22 | -0.21 | -0.20 | -0.19 | -0.18 | -0.17 |
| Massachusetts | 227,062 | 144,097 | 137,774 | -0.39 | -0.04 | 3,102 | 1,637 | 1,337 | -0.57 | -0.25 | -0.45 | -0.34 | -0.33 | -0.32 | -0.31 | -0.30 | -0.29 | -0.28 | -0.27 | -0.26 | -0.25 | -0.24 | -0.23 | -0.22 | -0.21 | -0.20 | -0.19 |

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Total Deaths</th>
<th>95% UI of Deaths</th>
<th>95% UI of Prevalence</th>
<th>Prevalence</th>
<th>Prevalence</th>
<th>Prevalence</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>384,426</td>
<td>(370,127 to 399,443)</td>
<td>-0.19 (-0.25 to -0.13)</td>
<td>0.03 (-0.04 to 0.11)</td>
<td>3.753 (3.613 to 3.900)</td>
<td>2.317 (2.223 to 2.416)</td>
<td>2.071 (1.924 to 2.225)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>135,828</td>
<td>(129,705 to 141,666)</td>
<td>-0.35 (-0.42 to -0.28)</td>
<td>0.03 (-0.06 to 0.14)</td>
<td>2.692 (2.567 to 2.810)</td>
<td>1.285 (1.211 to 1.349)</td>
<td>1.089 (0.970 to 1.206)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>127,162</td>
<td>(121,007 to 134,133)</td>
<td>-0.13 (-0.23 to -0.02)</td>
<td>0.01 (-1.1 to 1.13)</td>
<td>4.450 (4.227 to 4.701)</td>
<td>3.107 (2.946 to 3.308)</td>
<td>2.725 (2.421 to 3.046)</td>
</tr>
<tr>
<td>Missouri</td>
<td>225,935</td>
<td>(217,679 to 234,896)</td>
<td>-0.16 (-0.22 to -0.09)</td>
<td>0.04 (-0.05 to 0.13)</td>
<td>3.524 (3.390 to 3.669)</td>
<td>2.373 (2.275 to 2.469)</td>
<td>2.137 (1.978 to 2.286)</td>
</tr>
<tr>
<td>Montana</td>
<td>25,749</td>
<td>(24,388 to 27,040)</td>
<td>-0.09 (-0.2 to -0.03)</td>
<td>0.04 (-0.08 to 0.17)</td>
<td>2.677 (2.535 to 2.814)</td>
<td>1.683 (1.586 to 1.783)</td>
<td>1.424 (1.255 to 1.599)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>60,287</td>
<td>(57,839 to 62,835)</td>
<td>-0.38 (-0.42 to -0.33)</td>
<td>-0.01 (-0.09 to 0.07)</td>
<td>2.994 (2.868 to 3.123)</td>
<td>1.596 (1.514 to 1.670)</td>
<td>1.372 (1.255 to 1.485)</td>
</tr>
<tr>
<td>Nevada</td>
<td>41,564</td>
<td>(39,098 to 45,002)</td>
<td>0.72 (0.56 to 0.89)</td>
<td>0.15 (0.04 to 0.26)</td>
<td>3.413 (3.214 to 3.677)</td>
<td>2.161 (2.036 to 2.329)</td>
<td>1.771 (1.603 to 1.964)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>37,536</td>
<td>(36,032 to 39,060)</td>
<td>-0.23 (-0.3 to -0.17)</td>
<td>0.02 (-0.07 to 0.11)</td>
<td>3.175 (3.043 to 3.305)</td>
<td>1.628 (1.547 to 1.712)</td>
<td>1.322 (1.199 to 1.445)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>321,171</td>
<td>(309,084 to 334,159)</td>
<td>-0.35 (-0.41 to -0.29)</td>
<td>-0.04 (-0.12 to 0.04)</td>
<td>3.417 (3.287 to 3.559)</td>
<td>1.877 (1.792 to 1.960)</td>
<td>1.550 (1.426 to 1.684)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>40,589</td>
<td>(38,670 to 42,729)</td>
<td>0.14 (0.0 to 0.28)</td>
<td>0.09 (-0.03 to 0.23)</td>
<td>2.662 (2.534 to 2.804)</td>
<td>1.724 (1.644 to 1.812)</td>
<td>1.520 (1.342 to 1.701)</td>
</tr>
<tr>
<td>New York</td>
<td>845,708</td>
<td>(808,689 to 881,626)</td>
<td>-0.38 (-0.44 to -0.31)</td>
<td>-0.07 (-0.17 to 0.03)</td>
<td>3.916 (3.743 to 4.084)</td>
<td>2.219 (2.117 to 2.327)</td>
<td>1.783 (1.597 to 1.986)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>269,864</td>
<td>(258,737 to 282,086)</td>
<td>-0.08 (-0.15 to 0)</td>
<td>0.08 (0.0 to 0.17)</td>
<td>3.647 (3.494 to 3.813)</td>
<td>2.090 (1.995 to 2.186)</td>
<td>1.745 (1.623 to 1.881)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>23,683</td>
<td>(22,452 to 24,830)</td>
<td>-0.33 (-0.4 to -0.24)</td>
<td>0 (-0.11 to 0.11)</td>
<td>2.934 (2.769 to 3.088)</td>
<td>1.717 (1.618 to 1.804)</td>
<td>1.524 (1.354 to 1.708)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Mean (95% CI)</th>
<th>Number of Deaths</th>
<th>Mean (95% CI)</th>
<th>Number of Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>472,793 (455,276 to 491,140)</td>
<td>346,104 (332,919 to 361,078)</td>
<td>338,677 (315,308 to 363,269)</td>
<td>-0.28 (-0.34 to -0.23)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>149,288 (144,208 to 154,813)</td>
<td>135,785 (129,840 to 141,399)</td>
<td>141,349 (131,851 to 151,291)</td>
<td>-0.05 (-0.12 to -0.02)</td>
</tr>
<tr>
<td>Oregon</td>
<td>101,173 (97,027 to 105,183)</td>
<td>75,072 (71,204 to 78,429)</td>
<td>75,215 (69,441 to 80,684)</td>
<td>-0.26 (-0.32 to -0.19)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>570,975 (550,352 to 591,700)</td>
<td>385,413 (369,935 to 400,927)</td>
<td>357,853 (334,678 to 382,671)</td>
<td>-0.37 (-0.42 to -0.32)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>44,503 (42,397 to 46,440)</td>
<td>30,926 (29,192 to 32,459)</td>
<td>26,979 (24,257 to 30,129)</td>
<td>-0.39 (-0.46 to -0.32)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>143,998 (136,915 to 151,080)</td>
<td>127,900 (121,605 to 133,934)</td>
<td>144,368 (130,562 to 158,830)</td>
<td>0 (-0.11 to 0.12)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>27,883 (26,448 to 29,245)</td>
<td>20,275 (19,101 to 21,392)</td>
<td>20,846 (18,734 to 23,058)</td>
<td>-0.25 (-0.33 to -0.17)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>223,098 (214,471 to 232,238)</td>
<td>204,634 (196,152 to 214,869)</td>
<td>224,821 (207,122 to 240,756)</td>
<td>-0.01 (-0.07 to 0.09)</td>
</tr>
<tr>
<td>Texas</td>
<td>556,778 (533,401 to 584,304)</td>
<td>530,870 (508,128 to 555,611)</td>
<td>601,120 (550,131 to 645,417)</td>
<td>-0.08 (-0.02 to 0.18)</td>
</tr>
<tr>
<td>Utah</td>
<td>35,458 (34,027 to 37,165)</td>
<td>34,305 (32,714 to 36,084)</td>
<td>40,333 (37,404 to 43,549)</td>
<td>-0.14 (-0.05 to 0.24)</td>
</tr>
<tr>
<td>Vermont</td>
<td>18,928 (18,135 to 19,776)</td>
<td>13,211 (12,579 to 13,843)</td>
<td>13,601 (12,507 to 14,759)</td>
<td>0.28 (-0.34 to -0.22)</td>
</tr>
<tr>
<td>Virginia</td>
<td>212,763 (205,179 to 221,519)</td>
<td>177,391 (170,168 to 184,515)</td>
<td>182,416 (169,337 to 196,993)</td>
<td>-0.14 (-0.21 to -0.07)</td>
</tr>
<tr>
<td>Washington</td>
<td>145,587 (140,049 to 151,748)</td>
<td>121,015 (115,770 to 125,984)</td>
<td>126,659 (117,008 to 136,558)</td>
<td>-0.13 (-0.2 to -0.05)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>Ischemic stroke</th>
<th>Alabama</th>
<th>Alaska</th>
<th>Arizona</th>
<th>Arkansas</th>
<th>California</th>
<th>Colorado</th>
<th>Connecticut</th>
<th>Delaware</th>
<th>District of Columbia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30,848</td>
<td>1,304</td>
<td>18,595</td>
<td>21,520</td>
<td>152,209</td>
<td>13,882</td>
<td>16,904</td>
<td>3,442</td>
<td>4,079</td>
</tr>
<tr>
<td></td>
<td>(27,801 to 34,170)</td>
<td>(1,154 to 1,452)</td>
<td>(16,406 to 20,816)</td>
<td>(19,284 to 23,723)</td>
<td>(135,607 to 168,527)</td>
<td>(12,265 to 15,490)</td>
<td>(14,747 to 19,065)</td>
<td>(3,039 to 3,854)</td>
<td>(3,619 to 4,682)</td>
</tr>
<tr>
<td></td>
<td>36,632</td>
<td>2,403</td>
<td>30,431</td>
<td>22,430</td>
<td>164,209</td>
<td>20,456</td>
<td>17,818</td>
<td>4,678</td>
<td>2,532</td>
</tr>
<tr>
<td></td>
<td>(32,794 to 40,346)</td>
<td>(2,085 to 2,691)</td>
<td>(26,738 to 34,034)</td>
<td>(19,986 to 24,910)</td>
<td>(143,021 to 184,023)</td>
<td>(18,145 to 22,695)</td>
<td>(15,321 to 20,119)</td>
<td>(4,085 to 5,248)</td>
<td>(2,181 to 2,893)</td>
</tr>
<tr>
<td></td>
<td>40,364</td>
<td>3,011</td>
<td>36,255</td>
<td>24,823</td>
<td>184,248</td>
<td>24,458</td>
<td>18,157</td>
<td>5,477</td>
<td>2,329</td>
</tr>
<tr>
<td></td>
<td>(35,622 to 45,142)</td>
<td>(2,607 to 3,410)</td>
<td>(31,017 to 41,301)</td>
<td>(21,983 to 27,873)</td>
<td>(160,092 to 212,519)</td>
<td>(21,371 to 27,451)</td>
<td>(15,683 to 20,872)</td>
<td>(4,752 to 6,181)</td>
<td>(1,956 to 2,698)</td>
</tr>
<tr>
<td></td>
<td>.31</td>
<td>1.31</td>
<td>.95</td>
<td>.15</td>
<td>.21</td>
<td>.76</td>
<td>.07</td>
<td>.59</td>
<td>-.43</td>
</tr>
<tr>
<td></td>
<td>(.18 to .45)</td>
<td>(1.09 to 1.55)</td>
<td>(.79 to 1.11)</td>
<td>(.06 to .26)</td>
<td>(.1 to .32)</td>
<td>(.62 to .91)</td>
<td>(-.03 to .18)</td>
<td>(.46 to .74)</td>
<td>(-.49 to -.37)</td>
</tr>
<tr>
<td></td>
<td>.1</td>
<td>.25</td>
<td>.19</td>
<td>.11</td>
<td>.12</td>
<td>.2</td>
<td>.02</td>
<td>.17</td>
<td>-.08</td>
</tr>
<tr>
<td></td>
<td>(0 to .21)</td>
<td>(.13 to .38)</td>
<td>(.1 to .29)</td>
<td>(.02 to .2)</td>
<td>(.04 to .22)</td>
<td>(.12 to .28)</td>
<td>(-.06 to .11)</td>
<td>(.09 to .27)</td>
<td>(-.16 to 0)</td>
</tr>
<tr>
<td></td>
<td>626</td>
<td>533</td>
<td>430</td>
<td>600</td>
<td>508</td>
<td>429</td>
<td>399</td>
<td>457</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td>(565 to 692)</td>
<td>(474 to 593)</td>
<td>(380 to 480)</td>
<td>(592 to 728)</td>
<td>(453 to 562)</td>
<td>(379 to 479)</td>
<td>(347 to 448)</td>
<td>(403 to 511)</td>
<td>(507 to 655)</td>
</tr>
<tr>
<td></td>
<td>594</td>
<td>477</td>
<td>390</td>
<td>570</td>
<td>394</td>
<td>393</td>
<td>339</td>
<td>398</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>(531 to 655)</td>
<td>(418 to 530)</td>
<td>(343 to 437)</td>
<td>(508 to 634)</td>
<td>(343 to 442)</td>
<td>(348 to 436)</td>
<td>(290 to 383)</td>
<td>(348 to 448)</td>
<td>(315 to 419)</td>
</tr>
<tr>
<td></td>
<td>546</td>
<td>419</td>
<td>335</td>
<td>542</td>
<td>342</td>
<td>337</td>
<td>306</td>
<td>352</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>(481 to 615)</td>
<td>(365 to 473)</td>
<td>(286 to 382)</td>
<td>(480 to 607)</td>
<td>(296 to 396)</td>
<td>(294 to 379)</td>
<td>(262 to 354)</td>
<td>(304 to 399)</td>
<td>(247 to 343)</td>
</tr>
<tr>
<td></td>
<td>-.13</td>
<td>-.21</td>
<td>-.22</td>
<td>-.18</td>
<td>-.33</td>
<td>-.21</td>
<td>-.23</td>
<td>-.12</td>
<td>-.48</td>
</tr>
<tr>
<td></td>
<td>(-.22 to -.04)</td>
<td>(-.29 to -.14)</td>
<td>(-.28 to -.16)</td>
<td>(-.25 to -.11)</td>
<td>(-.39 to -.27)</td>
<td>(-.28 to -.15)</td>
<td>(-.31 to -.16)</td>
<td>(-.17 to -.03)</td>
<td>(-.54 to -.43)</td>
</tr>
<tr>
<td></td>
<td>-.08</td>
<td>-.12</td>
<td>-.14</td>
<td>-.05</td>
<td>-.13</td>
<td>-.14</td>
<td>-.1</td>
<td>-.12</td>
<td>-.2</td>
</tr>
<tr>
<td></td>
<td>(-.16 to .01)</td>
<td>(-.2 to -.03)</td>
<td>(-.21 to -.07)</td>
<td>(-.12 to -.03)</td>
<td>(-.2 to -.05)</td>
<td>(-.2 to -.08)</td>
<td>(-.17 to -.01)</td>
<td>(-.18 to -.04)</td>
<td>(-.27 to -.12)</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>88,804</td>
<td>(78,144 to 99,954)</td>
<td>109,177</td>
<td>(94,538 to 123,084)</td>
<td>129,062</td>
<td>(111,393 to 148,010)</td>
<td>.45 (.33 to .58)</td>
<td>.18 (.08 to .28)</td>
<td>.08 (-.01 to .17)</td>
</tr>
<tr>
<td>Georgia</td>
<td>42,004</td>
<td>(37,880 to 46,556)</td>
<td>52,335</td>
<td>(46,380 to 57,731)</td>
<td>63,822</td>
<td>(56,029 to 72,167)</td>
<td>.52 (.38 to .66)</td>
<td>.22 (.12 to .33)</td>
<td>.05 (-.02 to .13)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>5,101</td>
<td>(4,499 to 5,706)</td>
<td>7,023</td>
<td>(6,102 to 7,886)</td>
<td>8,007</td>
<td>(7,012 to 9,015)</td>
<td>.57 (.45 to .7)</td>
<td>.14 (.06 to .22)</td>
<td>.08 (-.01 to .17)</td>
</tr>
<tr>
<td>Idaho</td>
<td>5,649</td>
<td>(4,996 to 6,340)</td>
<td>8,184</td>
<td>(7,251 to 9,104)</td>
<td>9,711</td>
<td>(8,562 to 10,977)</td>
<td>.72 (.55 to .9)</td>
<td>.19 (.08 to .3)</td>
<td>.05 (-.01 to .17)</td>
</tr>
<tr>
<td>Illinois</td>
<td>68,366</td>
<td>(60,936 to 76,325)</td>
<td>70,038</td>
<td>(62,486 to 78,298)</td>
<td>72,341</td>
<td>(63,343 to 81,340)</td>
<td>.06 (-.02 to .15)</td>
<td>.03 (-.04 to .11)</td>
<td>.05 (-.01 to .17)</td>
</tr>
<tr>
<td>Indiana</td>
<td>35,997</td>
<td>(32,157 to 40,117)</td>
<td>37,690</td>
<td>(33,035 to 42,153)</td>
<td>41,713</td>
<td>(36,570 to 47,165)</td>
<td>.16 (.06 to .28)</td>
<td>.11 (.01 to .22)</td>
<td>.05 (-.01 to .17)</td>
</tr>
<tr>
<td>Iowa</td>
<td>19,237</td>
<td>(17,114 to 21,350)</td>
<td>19,894</td>
<td>(17,528 to 22,177)</td>
<td>20,274</td>
<td>(17,733 to 22,775)</td>
<td>.05 (-.03 to .15)</td>
<td>.02 (-.05 to .11)</td>
<td>.05 (-.01 to .17)</td>
</tr>
<tr>
<td>Kansas</td>
<td>15,590</td>
<td>(13,829 to 17,461)</td>
<td>17,553</td>
<td>(15,573 to 19,650)</td>
<td>18,419</td>
<td>(16,150 to 20,780)</td>
<td>.18 (.06 to .3)</td>
<td>.05 (-.05 to .15)</td>
<td>.05 (-.01 to .17)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>24,330</td>
<td>(21,760 to 26,936)</td>
<td>26,415</td>
<td>(23,304 to 29,311)</td>
<td>29,333</td>
<td>(25,820 to 32,766)</td>
<td>.21 (.11 to .3)</td>
<td>.11 (.03 to .2)</td>
<td>.11 (.03 to .2)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>27,082</td>
<td>(24,212 to 30,094)</td>
<td>29,529</td>
<td>(26,255 to 32,625)</td>
<td>33,271</td>
<td>(29,667 to 37,056)</td>
<td>.23 (.13 to .34)</td>
<td>.13 (.05 to .22)</td>
<td>.13 (.05 to .22)</td>
</tr>
<tr>
<td>Maine</td>
<td>6,980</td>
<td>(6,177 to 7,857)</td>
<td>8,092</td>
<td>(6,995 to 9,083)</td>
<td>8,902</td>
<td>(7,727 to 10,002)</td>
<td>.28 (.16 to .39)</td>
<td>.1 (.02 to .19)</td>
<td>.1 (.02 to .19)</td>
</tr>
<tr>
<td>Maryland</td>
<td>24,648</td>
<td>(21,729 to 27,460)</td>
<td>28,513</td>
<td>(24,994 to 31,794)</td>
<td>31,622</td>
<td>(27,439 to 35,926)</td>
<td>.28 (.17 to .39)</td>
<td>.11 (.03 to .19)</td>
<td>.11 (.03 to .19)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>32,762</td>
<td>(28,867 to 36,407)</td>
<td>33,603</td>
<td>(29,147 to 37,816)</td>
<td>35,375</td>
<td>(30,394 to 39,972)</td>
<td>.08 (-.01 to .17)</td>
<td>.05 (-.02 to .13)</td>
<td>.05 (-.02 to .13)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Cases</th>
<th>(Lower, Upper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>52,685</td>
<td>(46,849 to 58,483)</td>
<td>56,228</td>
<td>(49,046 to 62,602)</td>
<td>61,023</td>
<td>(52,952 to 68,741)</td>
<td>.16</td>
<td>(.07 to .25)</td>
<td>.09</td>
<td>(.01 to .16)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>26,280</td>
<td>(23,382 to 29,329)</td>
<td>26,843</td>
<td>(23,487 to 30,124)</td>
<td>30,336</td>
<td>(26,087 to 34,200)</td>
<td>.15</td>
<td>(.05 to .26)</td>
<td>.13</td>
<td>(.05 to .22)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>19,048</td>
<td>(17,280 to 20,998)</td>
<td>20,499</td>
<td>(18,309 to 22,695)</td>
<td>23,050</td>
<td>(20,173 to 25,704)</td>
<td>.21</td>
<td>(.09 to .34)</td>
<td>.13</td>
<td>(.02 to .23)</td>
</tr>
<tr>
<td>Missouri</td>
<td>33,628</td>
<td>(29,748 to 37,433)</td>
<td>36,312</td>
<td>(31,790 to 40,504)</td>
<td>39,665</td>
<td>(34,897 to 44,343)</td>
<td>.18</td>
<td>(.09 to .28)</td>
<td>.09</td>
<td>(.01 to .18)</td>
</tr>
<tr>
<td>Montana</td>
<td>4,786</td>
<td>(4,223 to 5,384)</td>
<td>5,702</td>
<td>(5,041 to 6,412)</td>
<td>6,437</td>
<td>(5,582 to 7,268)</td>
<td>.35</td>
<td>(.22 to .48)</td>
<td>.13</td>
<td>(.03 to .23)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>10,378</td>
<td>(9,186 to 11,534)</td>
<td>10,841</td>
<td>(9,569 to 12,132)</td>
<td>11,502</td>
<td>(10,116 to 12,820)</td>
<td>.11</td>
<td>(.03 to .2)</td>
<td>.06</td>
<td>(-.01 to .14)</td>
</tr>
<tr>
<td>Nevada</td>
<td>5,847</td>
<td>(5,147 to 6,517)</td>
<td>12,711</td>
<td>(11,162 to 14,244)</td>
<td>16,023</td>
<td>(13,902 to 18,150)</td>
<td>1.74</td>
<td>(1.52 to 1.99)</td>
<td>.26</td>
<td>(.17 to .36)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>5,421</td>
<td>(4,775 to 6,087)</td>
<td>6,105</td>
<td>(5,231 to 6,924)</td>
<td>7,102</td>
<td>(6,128 to 8,103)</td>
<td>.31</td>
<td>(.19 to .43)</td>
<td>.16</td>
<td>(.08 to .27)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>42,018</td>
<td>(37,034 to 47,087)</td>
<td>40,497</td>
<td>(34,807 to 46,033)</td>
<td>43,057</td>
<td>(36,859 to 49,549)</td>
<td>.02</td>
<td>(-.06 to .11)</td>
<td>.06</td>
<td>(-.01 to .16)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>6,257</td>
<td>(5,537 to 6,987)</td>
<td>8,857</td>
<td>(7,728 to 10,028)</td>
<td>10,721</td>
<td>(9,243 to 12,268)</td>
<td>.71</td>
<td>(.55 to .88)</td>
<td>.21</td>
<td>(.1 to .33)</td>
</tr>
<tr>
<td>New York</td>
<td>83,853</td>
<td>(73,466 to 94,339)</td>
<td>66,434</td>
<td>(56,759 to 76,417)</td>
<td>73,107</td>
<td>(61,516 to 84,995)</td>
<td>.13</td>
<td>(-.22 to -.04)</td>
<td>.1</td>
<td>(0 to .2)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>50,173</td>
<td>(45,092 to 55,050)</td>
<td>62,646</td>
<td>(55,572 to 69,157)</td>
<td>74,515</td>
<td>(66,125 to 83,306)</td>
<td>.49</td>
<td>(.38 to .6)</td>
<td>.19</td>
<td>(.11 to .27)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>3,877</td>
<td>(3,442 to 4,306)</td>
<td>3,969</td>
<td>(3,452 to 4,443)</td>
<td>4,104</td>
<td>(3,514 to 4,650)</td>
<td>.06</td>
<td>(-.03 to .15)</td>
<td>.03</td>
<td>(-.05 to .12)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Mean (Min to Max)</th>
<th>Min (Min to Max)</th>
<th>Max (Min to Max)</th>
<th>Min (Min to Max)</th>
<th>Max (Min to Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>63,208 (56,034 to 70,895)</td>
<td>72,500 (63,423 to 81,050)</td>
<td>77,738 (68,454 to 86,318)</td>
<td>.23 (.12 to .33)</td>
<td>.07 (0 to .15)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>22,205 (19,861 to 24,756)</td>
<td>25,713 (22,916 to 28,412)</td>
<td>27,615 (24,418 to 30,686)</td>
<td>.24 (.14 to .35)</td>
<td>.07 (-.01 to .15)</td>
</tr>
<tr>
<td>Oregon</td>
<td>20,747 (18,656 to 22,860)</td>
<td>24,913 (22,283 to 27,737)</td>
<td>26,551 (23,382 to 29,603)</td>
<td>.28 (.17 to .39)</td>
<td>.07 (-.01 to .15)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>77,600 (68,788 to 86,500)</td>
<td>82,364 (72,346 to 92,124)</td>
<td>82,655 (72,253 to 93,152)</td>
<td>.07 (-.02 to .16)</td>
<td>0 (-.07 to .08)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>5,304 (4,674 to 5,992)</td>
<td>5,328 (4,617 to 6,052)</td>
<td>5,285 (4,459 to 6,032)</td>
<td>0 (-1 to .09)</td>
<td>-.01 (-.09 to .08)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>27,187 (24,695 to 29,786)</td>
<td>31,732 (28,371 to 35,081)</td>
<td>39,045 (34,581 to 43,498)</td>
<td>.44 (.3 to .58)</td>
<td>.23 (.12 to .34)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>4,275 (3,781 to 4,782)</td>
<td>4,713 (4,097 to 5,268)</td>
<td>5,175 (4,490 to 5,858)</td>
<td>.21 (.09 to .33)</td>
<td>.1 (.01 to .19)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>38,465 (34,511 to 42,349)</td>
<td>43,935 (38,928 to 48,705)</td>
<td>50,282 (44,567 to 55,622)</td>
<td>.31 (.2 to .41)</td>
<td>.15 (.07 to .23)</td>
</tr>
<tr>
<td>Texas</td>
<td>88,707 (79,300 to 98,473)</td>
<td>114,563 (100,533 to 127,749)</td>
<td>142,559 (124,877 to 159,088)</td>
<td>.61 (.48 to .75)</td>
<td>.24 (.16 to .34)</td>
</tr>
<tr>
<td>Utah</td>
<td>6,912 (6,161 to 7,682)</td>
<td>10,558 (9,411 to 11,783)</td>
<td>13,333 (11,825 to 14,840)</td>
<td>.93 (.77 to 1.1)</td>
<td>.26 (.17 to .36)</td>
</tr>
<tr>
<td>Vermont</td>
<td>2,816 (2,492 to 3,155)</td>
<td>3,153 (2,747 to 3,584)</td>
<td>3,613 (3,128 to 4,078)</td>
<td>.28 (.17 to .4)</td>
<td>.15 (.06 to .24)</td>
</tr>
<tr>
<td>Virginia</td>
<td>36,459 (32,643 to 40,032)</td>
<td>43,015 (37,903 to 48,026)</td>
<td>48,587 (42,815 to 54,571)</td>
<td>.33 (.23 to .44)</td>
<td>.13 (.06 to .21)</td>
</tr>
<tr>
<td>Washington</td>
<td>28,069 (24,924 to 30,965)</td>
<td>36,785 (32,376 to 41,005)</td>
<td>40,442 (35,471 to 45,341)</td>
<td>.44 (.33 to .56)</td>
<td>.1 (.02 to .19)</td>
</tr>
<tr>
<td>State</td>
<td>Median (95% CI)</td>
<td>Median (95% CI)</td>
<td>Per Capita Rate (95% CI)</td>
<td>Mean (95% CI)</td>
<td>Median (95% CI)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>West Virginia</td>
<td>12,359 (11,038 to 13,722)</td>
<td>13,280 (11,654 to 14,768)</td>
<td>.15 (.05 to .23)</td>
<td>.07 (-.01 to .15)</td>
<td>497 (445 to 552)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>30,224 (26,998 to 33,482)</td>
<td>33,285 (29,159 to 37,320)</td>
<td>.16 (.07 to .25)</td>
<td>.06 (-.03 to .14)</td>
<td>475 (424 to 528)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>2,071 (1,836 to 2,316)</td>
<td>2,703 (2,363 to 3,025)</td>
<td>.42 (.28 to .56)</td>
<td>.09 (0 to .19)</td>
<td>453 (402 to 507)</td>
</tr>
<tr>
<td>Alabama</td>
<td>520 (401 to 848)</td>
<td>917 (580 to 1,101)</td>
<td>.84 (.12 to 1.5)</td>
<td>0 (-.14 to .17)</td>
<td>13 (10 to 21)</td>
</tr>
<tr>
<td>Alaska</td>
<td>79 (63 to 113)</td>
<td>126 (74 to 161)</td>
<td>.68 (.03 to 1.32)</td>
<td>.05 (-.12 to .22)</td>
<td>14 (11 to 20)</td>
</tr>
<tr>
<td>Arizona</td>
<td>409 (321 to 615)</td>
<td>981 (713 to 1,148)</td>
<td>1.48 (.4 to 2.31)</td>
<td>0 (-.14 to .17)</td>
<td>11 (9 to 17)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>297 (236 to 453)</td>
<td>570 (373 to 688)</td>
<td>.98 (.24 to 1.64)</td>
<td>0 (-.14 to .15)</td>
<td>13 (10 to 20)</td>
</tr>
<tr>
<td>California</td>
<td>3,445 (2,716 to 5,046)</td>
<td>4,613 (3,193 to 5,403)</td>
<td>.32 (-.26 to .7)</td>
<td>-.04 (-.18 to .13)</td>
<td>11 (9 to 16)</td>
</tr>
<tr>
<td>Colorado</td>
<td>377 (313 to 511)</td>
<td>738 (443 to 893)</td>
<td>1.2 (.31 to 1.96)</td>
<td>.11 (-.03 to .26)</td>
<td>12 (10 to 15)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>341 (262 to 492)</td>
<td>435 (294 to 511)</td>
<td>.27 (-.26 to .69)</td>
<td>-.04 (-.18 to .11)</td>
<td>10 (8 to 15)</td>
</tr>
<tr>
<td>Delaware</td>
<td>87 (72 to 118)</td>
<td>151 (85 to 192)</td>
<td>.82 (.11 to 1.45)</td>
<td>.04 (-.1 to .18)</td>
<td>13 (11 to 18)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>138 (74 to 395)</td>
<td>115 (66 to 172)</td>
<td>-.22 (-.73 to .16)</td>
<td>-.17 (-.38 to .23)</td>
<td>21 (11 to 61)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Florida</th>
<th>Georgia</th>
<th>Hawaii</th>
<th>Idaho</th>
<th>Illinois</th>
<th>Indiana</th>
<th>Iowa</th>
<th>Kansas</th>
<th>Kentucky</th>
<th>Louisiana</th>
<th>Maine</th>
<th>Maryland</th>
<th>Massachusetts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,540</td>
<td>927</td>
<td>109</td>
<td>100</td>
<td>1,504</td>
<td>620</td>
<td>293</td>
<td>278</td>
<td>422</td>
<td>557</td>
<td>124</td>
<td>724</td>
<td>706</td>
</tr>
<tr>
<td></td>
<td>(1,242 to 2,294)</td>
<td>(753 to 1,327)</td>
<td>(79 to 142)</td>
<td>(79 to 140)</td>
<td>(1,217 to 2,205)</td>
<td>(490 to 890)</td>
<td>(240 to 410)</td>
<td>(231 to 362)</td>
<td>(320 to 634)</td>
<td>(429 to 938)</td>
<td>(101 to 171)</td>
<td>(514 to 946)</td>
<td>(584 to 1,017)</td>
</tr>
<tr>
<td></td>
<td>3,024</td>
<td>1,861</td>
<td>187</td>
<td>186</td>
<td>2,090</td>
<td>1,113</td>
<td>420</td>
<td>471</td>
<td>725</td>
<td>882</td>
<td>176</td>
<td>1,247</td>
<td>936</td>
</tr>
<tr>
<td></td>
<td>(2,016 to 5,586)</td>
<td>(1,139 to 2,299)</td>
<td>(86 to 244)</td>
<td>(126 to 220)</td>
<td>(1,462 to 2,458)</td>
<td>(735 to 1,344)</td>
<td>(256 to 508)</td>
<td>(295 to 585)</td>
<td>(549 to 841)</td>
<td>(515 to 1,084)</td>
<td>(118 to 213)</td>
<td>(648 to 1,621)</td>
<td>(551 to 1,143)</td>
</tr>
<tr>
<td></td>
<td>2,942</td>
<td>1,945</td>
<td>190</td>
<td>204</td>
<td>2,049</td>
<td>1,144</td>
<td>437</td>
<td>468</td>
<td>751</td>
<td>882</td>
<td>179</td>
<td>1,234</td>
<td>1,019</td>
</tr>
<tr>
<td></td>
<td>(2,167 to 3,483)</td>
<td>(1,288 to 2,435)</td>
<td>(92 to 251)</td>
<td>(143 to 245)</td>
<td>(1,438 to 2,420)</td>
<td>(783 to 1,413)</td>
<td>(272 to 531)</td>
<td>(308 to 588)</td>
<td>(577 to 910)</td>
<td>(577 to 1,106)</td>
<td>(126 to 219)</td>
<td>(685 to 1,621)</td>
<td>(619 to 1,285)</td>
</tr>
<tr>
<td></td>
<td>.98</td>
<td>1.15</td>
<td>.75</td>
<td>1.11</td>
<td>.41</td>
<td>.92</td>
<td>.53</td>
<td>.73</td>
<td>.87</td>
<td>.66</td>
<td>.49</td>
<td>.71</td>
<td>.48</td>
</tr>
<tr>
<td></td>
<td>(.19 to 1.58)</td>
<td>(.17 to 1.88)</td>
<td>(.03 to 1.43)</td>
<td>(.22 to 1.82)</td>
<td>(.26 to .87)</td>
<td>(.13 to 1.64)</td>
<td>(.11 to 1.05)</td>
<td>(.04 to 1.37)</td>
<td>(.15 to 1.49)</td>
<td>(.04 to 1.22)</td>
<td>(.08 to 1.01)</td>
<td>(.08 to 1.3)</td>
<td>(.10 to .97)</td>
</tr>
<tr>
<td></td>
<td>-.02</td>
<td>.05</td>
<td>.03</td>
<td>.1</td>
<td>-.02</td>
<td>.03</td>
<td>.05</td>
<td>0</td>
<td>.04</td>
<td>.01</td>
<td>.02</td>
<td>0</td>
<td>-.09</td>
</tr>
<tr>
<td></td>
<td>(-.18 to .2)</td>
<td>(-.1 to .25)</td>
<td>(-.11 to .17)</td>
<td>(-.05 to .26)</td>
<td>(-.14 to .14)</td>
<td>(-.11 to .17)</td>
<td>(-.09 to .18)</td>
<td>(-.14 to .16)</td>
<td>(-.09 to .19)</td>
<td>(-.14 to .17)</td>
<td>(-.11 to .16)</td>
<td>(-.13 to .16)</td>
<td>(-.10 to .97)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>14</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>10</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>(10 to 19)</td>
<td>(12 to 20)</td>
<td>(7 to 13)</td>
<td>(8 to 14)</td>
<td>(9 to 15)</td>
<td>(9 to 16)</td>
<td>(9 to 15)</td>
<td>(9 to 18)</td>
<td>(12 to 21)</td>
<td>(12 to 22)</td>
<td>(8 to 14)</td>
<td>(9 to 17)</td>
<td>(10 to 17)</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>21</td>
<td>14</td>
<td>13</td>
<td>17</td>
<td>18</td>
<td>15</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>14</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(12 to 22)</td>
<td>(13 to 25)</td>
<td>(7 to 19)</td>
<td>(9 to 15)</td>
<td>(12 to 20)</td>
<td>(13 to 22)</td>
<td>(9 to 18)</td>
<td>(11 to 22)</td>
<td>(14 to 21)</td>
<td>(14 to 21)</td>
<td>(9 to 18)</td>
<td>(12 to 29)</td>
<td>(9 to 19)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>20</td>
<td>13</td>
<td>13</td>
<td>17</td>
<td>18</td>
<td>15</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>(12 to 19)</td>
<td>(13 to 24)</td>
<td>(6 to 17)</td>
<td>(9 to 15)</td>
<td>(12 to 20)</td>
<td>(13 to 22)</td>
<td>(9 to 18)</td>
<td>(11 to 22)</td>
<td>(14 to 21)</td>
<td>(14 to 21)</td>
<td>(9 to 18)</td>
<td>(12 to 27)</td>
<td>(9 to 19)</td>
</tr>
<tr>
<td></td>
<td>.34</td>
<td>.42</td>
<td>.38</td>
<td>.29</td>
<td>.33</td>
<td>.66</td>
<td>.37</td>
<td>.5</td>
<td>.6</td>
<td>.59</td>
<td>.47</td>
<td>.39</td>
<td>.31</td>
</tr>
<tr>
<td></td>
<td>(.22 to .77)</td>
<td>(.24 to .9)</td>
<td>(.19 to .9)</td>
<td>(.26 to .73)</td>
<td>(.32 to .75)</td>
<td>(.01 to 1.28)</td>
<td>(.15 to .13)</td>
<td>(.11 to 1.05)</td>
<td>(.13 to 1.4)</td>
<td>(.01 to 1.14)</td>
<td>(.1 to 1.02)</td>
<td>(.25 to .85)</td>
<td>(.22 to .74)</td>
</tr>
<tr>
<td></td>
<td>-.12</td>
<td>-.04</td>
<td>-.06</td>
<td>-.03</td>
<td>-.02</td>
<td>-.01</td>
<td>0</td>
<td>-.03</td>
<td>0</td>
<td>-.06</td>
<td>-.1</td>
<td>-.07</td>
<td>-.1</td>
</tr>
<tr>
<td></td>
<td>(-.26 to .09)</td>
<td>(-.18 to .14)</td>
<td>(-.18 to .07)</td>
<td>(-.16 to .12)</td>
<td>(-.15 to .14)</td>
<td>(-.15 to .13)</td>
<td>0</td>
<td>(-.13 to .11)</td>
<td>0</td>
<td>(-.19 to .11)</td>
<td>(-.1 to .19)</td>
<td>(-.19 to .08)</td>
<td>(-.1 to .15)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>1,183 (954 to 1,733)</td>
<td>1,658 (1,118 to 1,968)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>732 (414 to 910)</td>
<td>1,740 (1,140 to 2,162)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>326 (245 to 593)</td>
<td>556 (355 to 748)</td>
</tr>
<tr>
<td>Missouri</td>
<td>599 (465 to 901)</td>
<td>961 (726 to 1,133)</td>
</tr>
<tr>
<td>Montana</td>
<td>113 (90 to 130)</td>
<td>182 (102 to 245)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>1,183 (954 to 1,733)</td>
<td>1,658 (1,118 to 1,968)</td>
</tr>
<tr>
<td>Nevada</td>
<td>732 (414 to 910)</td>
<td>1,740 (1,140 to 2,162)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>162 (90 to 130)</td>
<td>271 (102 to 245)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>1,183 (954 to 1,733)</td>
<td>1,658 (1,118 to 1,968)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>732 (414 to 910)</td>
<td>1,740 (1,140 to 2,162)</td>
</tr>
<tr>
<td>New York</td>
<td>1,183 (954 to 1,733)</td>
<td>1,658 (1,118 to 1,968)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1,183 (954 to 1,733)</td>
<td>1,658 (1,118 to 1,968)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>732 (414 to 910)</td>
<td>1,740 (1,140 to 2,162)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>2016 (1,138 to 1,788)</th>
<th>2018 (1,371 to 2,528)</th>
<th>2020 (1,457 to 2,543)</th>
<th>2022 (0 to 1.12)</th>
<th>2024 (11 to 17)</th>
<th>2026 (13 to 23)</th>
<th>2028 (13 to 23)</th>
<th>2030 (0.02 to 1.07)</th>
<th>2032 (-0.13 to 0.14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>1,362 (1,138 to 1,788)</td>
<td>2,086 (1,371 to 2,528)</td>
<td>2,098 (1,457 to 2,543)</td>
<td>.58 (0 to 1.12)</td>
<td>.01 (-12 to .15)</td>
<td>13 (11 to 17)</td>
<td>19 (13 to 23)</td>
<td>.53 (-0.02 to 1.07)</td>
<td>.01 (-0.13 to 0.14)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>349 (256 to 562)</td>
<td>628 (476 to 755)</td>
<td>680 (529 to 887)</td>
<td>1.05 (.25 to 1.72)</td>
<td>.09 (-0.07 to 0.26)</td>
<td>11 (8 to 18)</td>
<td>18 (14 to 22)</td>
<td>18 (14 to 24)</td>
<td>.72 (.05 to 1.3)</td>
</tr>
<tr>
<td>Oregon</td>
<td>276 (212 to 410)</td>
<td>453 (315 to 537)</td>
<td>470 (331 to 613)</td>
<td>.77 (.01 to 1.33)</td>
<td>.04 (-0.09 to 0.18)</td>
<td>10 (8 to 15)</td>
<td>13 (9 to 15)</td>
<td>12 (8 to 15)</td>
<td>.23 (-0.32 to 0.64)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>1,257 (970 to 1,888)</td>
<td>1,763 (1,301 to 2,033)</td>
<td>1,715 (1,343 to 1,990)</td>
<td>.42 (-0.08 to 0.88)</td>
<td>.02 (-0.15 to 0.12)</td>
<td>11 (8 to 16)</td>
<td>15 (11 to 17)</td>
<td>14 (11 to 16)</td>
<td>.37 (-0.14 to 0.83)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>134 (110 to 209)</td>
<td>162 (96 to 199)</td>
<td>156 (96 to 201)</td>
<td>.19 (-0.23 to 0.59)</td>
<td>-.03 (-0.17 to 0.12)</td>
<td>14 (11 to 21)</td>
<td>16 (9 to 19)</td>
<td>15 (9 to 20)</td>
<td>.15 (-0.15 to 0.13)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>480 (384 to 688)</td>
<td>900 (494 to 1,140)</td>
<td>929 (555 to 1,187)</td>
<td>.98 (.15 to 1.67)</td>
<td>.04 (-0.11 to 0.2)</td>
<td>14 (11 to 20)</td>
<td>21 (12 to 27)</td>
<td>20 (12 to 25)</td>
<td>.46 (-0.16 to 0.97)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>90 (74 to 122)</td>
<td>126 (86 to 150)</td>
<td>141 (97 to 173)</td>
<td>.6 (0 to 1.12)</td>
<td>.12 (-0.04 to 0.2)</td>
<td>13 (11 to 18)</td>
<td>17 (12 to 20)</td>
<td>17 (12 to 21)</td>
<td>.34 (-0.17 to 0.79)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>593 (471 to 886)</td>
<td>1,230 (824 to 1,465)</td>
<td>1,317 (919 to 1,569)</td>
<td>1.32 (.37 to 2.11)</td>
<td>.08 (-0.07 to 0.25)</td>
<td>12 (10 to 19)</td>
<td>21 (14 to 25)</td>
<td>21 (15 to 25)</td>
<td>.75 (.03 to 1.34)</td>
</tr>
<tr>
<td>Texas</td>
<td>2,120 (1,661 to 3,033)</td>
<td>3,952 (2,747 to 4,665)</td>
<td>4,243 (3,130 to 4,954)</td>
<td>1.08 (.22 to 1.76)</td>
<td>.08 (-0.07 to 0.22)</td>
<td>12 (10 to 17)</td>
<td>17 (12 to 20)</td>
<td>16 (12 to 19)</td>
<td>.35 (-0.22 to 0.81)</td>
</tr>
<tr>
<td>Utah</td>
<td>208 (169 to 245)</td>
<td>427 (221 to 547)</td>
<td>487 (264 to 632)</td>
<td>1.34 (.46 to 2.12)</td>
<td>.15 (.01 to 0.28)</td>
<td>12 (9 to 14)</td>
<td>17 (9 to 21)</td>
<td>16 (9 to 21)</td>
<td>.39 (-0.13 to 0.85)</td>
</tr>
<tr>
<td>Vermont</td>
<td>60 (51 to 82)</td>
<td>81 (51 to 100)</td>
<td>79 (52 to 99)</td>
<td>.34 (-0.16 to 0.81)</td>
<td>-.02 (-0.15 to 0.11)</td>
<td>11 (9 to 15)</td>
<td>14 (9 to 17)</td>
<td>13 (9 to 17)</td>
<td>.24 (-0.24 to 0.67)</td>
</tr>
<tr>
<td>Virginia</td>
<td>675 (526 to 974)</td>
<td>1,116 (781 to 1,302)</td>
<td>1,141 (829 to 1,334)</td>
<td>.77 (-0.02 to 1.37)</td>
<td>.03 (-1 to 0.19)</td>
<td>11 (9 to 16)</td>
<td>15 (10 to 17)</td>
<td>14 (10 to 16)</td>
<td>.32 (-0.29 to 0.77)</td>
</tr>
<tr>
<td>Washington</td>
<td>465 (354 to 679)</td>
<td>756 (528 to 892)</td>
<td>815 (571 to 1,014)</td>
<td>.83 (.04 to 1.4)</td>
<td>.08 (-0.06 to 0.22)</td>
<td>10 (7 to 14)</td>
<td>12 (8 to 14)</td>
<td>12 (8 to 14)</td>
<td>.25 (-0.32 to 0.66)</td>
</tr>
<tr>
<td>West Virginia</td>
<td>235 (199 to 214)</td>
<td>376 (231 to 463)</td>
<td>388 (234 to 484)</td>
<td>.69 (-.06 to 1.28)</td>
<td>.03 (-.1 to .19)</td>
<td>14 (12 to 18)</td>
<td>22 (14 to 27)</td>
<td>23 (14 to 29)</td>
<td>.71 (-.05 to 1.33)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>487 (401 to 661)</td>
<td>808 (484 to 985)</td>
<td>817 (516 to 1,004)</td>
<td>.73 (-.01 to 1.35)</td>
<td>.02 (-.11 to .16)</td>
<td>10 (8 to 14)</td>
<td>15 (9 to 18)</td>
<td>15 (9 to 18)</td>
<td>.47 (-.17 to 1)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>60 (52 to 73)</td>
<td>100 (60 to 126)</td>
<td>104 (64 to 135)</td>
<td>.75 (13 to 1.34)</td>
<td>.05 (-.1 to .21)</td>
<td>14 (12 to 17)</td>
<td>20 (12 to 25)</td>
<td>18 (11 to 24)</td>
<td>.36 (-.12 to .2)</td>
</tr>
</tbody>
</table>

Other cardiomyopathy

Alabama	8,193 (6,217 to 9,255)	8,531 (7,625 to 10,243)	8,799 (7,464 to 11,697)	.09 (-.14 to .63)	.03 (-.11 to .23)	185 (140 to 208)	159 (143 to 190)	148 (125 to 194)	-.19 (-.36 to .2)	-.07 (-.2 to .09)
Alaska	565 (504 to 660)	693 (585 to 955)	822 (651 to 1,222)	.45 (.14 to .99)	.18 (.01 to .39)	138 (123 to 160)	108 (92 to 146)	106 (84 to 155)	-.24 (-.4 to .05)	-.03 (-.17 to .15)
Arizona	6,188 (4,667 to 6,935)	7,714 (6,810 to 9,753)	8,746 (7,374 to 11,721)	.44 (.1 to 1.18)	.13 (.01 to .3)	157 (118 to 176)	114 (101 to 143)	104 (88 to 137)	-.32 (-.48 to .01)	-.09 (-.2 to .04)
Arkansas	3,891 (3,453 to 4,379)	4,525 (4,019 to 5,862)	4,733 (3,923 to 6,925)	.22 (-.01 to .72)	.04 (-.09 to .25)	144 (128 to 162)	137 (121 to 177)	130 (108 to 190)	-.1 (-.27 to .26)	-.06 (-.18 to .13)
California	59,360 (37,616 to 69,634)	53,219 (43,401 to 58,715)	54,330 (46,662 to 63,391)	-.05 (-.27 to .4)	.02 (-.12 to .19)	198 (125 to 233)	135 (111 to 149)	117 (99 to 136)	-.39 (-.53 to -.11)	-.13 (-.25 to 0)
Colorado	3,617 (3,253 to 4,343)	4,536 (3,862 to 6,468)	5,339 (4,302 to 8,220)	.47 (.19 to 1.02)	.17 (.03 to .35)	112 (101 to 133)	88 (75 to 126)	81 (65 to 125)	-.28 (-.42 to 0)	-.09 (-.19 to .05)
Connecticut	6,013 (4,334 to 6,781)	5,009 (4,377 to 5,757)	4,980 (4,281 to 6,162)	-.16 (-.33 to .17)	-.01 (-.14 to .16)	160 (115 to 181)	115 (102 to 133)	105 (90 to 129)	-.33 (-.47 to -.09)	-.09 (-.21 to .05)
Delaware	1,355 (980 to 1,540)	1,602 (1,325 to 1,773)	1,767 (1,553 to 1,996)	.32 (.11 to .71)	.11 (-.03 to .26)	189 (137 to 214)	155 (129 to 172)	142 (126 to 161)	-.24 (-.36 to -.01)	-.08 (-.19 to .04)
District of Columbia	2,400 (1,325 to 3,083)	1,260 (1,054 to 1,576)	1,158 (974 to 1,482)	-.49 (-.64 to -.13)	-.08 (-.22 to .09)	358 (196 to 460)	196 (164 to 245)	155 (131 to 197)	-.54 (-.67 to -.22)	-.21 (-.33 to -.06)

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>State</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>Coef</th>
<th>Coef</th>
<th>Coef</th>
<th>Coef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>31,786</td>
<td>35,391</td>
<td>39,360</td>
<td>.27</td>
<td>.11</td>
<td>.19</td>
<td>.19</td>
</tr>
<tr>
<td>Georgia</td>
<td>14,274</td>
<td>15,170</td>
<td>16,222</td>
<td>.19</td>
<td>.07</td>
<td>.07</td>
<td>.07</td>
</tr>
<tr>
<td>Hawaii</td>
<td>2,588</td>
<td>2,643</td>
<td>2,914</td>
<td>.17</td>
<td>.11</td>
<td>.17</td>
<td>.17</td>
</tr>
<tr>
<td>Idaho</td>
<td>1,134</td>
<td>1,473</td>
<td>1,804</td>
<td>.59</td>
<td>.22</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>Illinois</td>
<td>25,393</td>
<td>21,204</td>
<td>20,954</td>
<td>-.15</td>
<td>-.01</td>
<td>206</td>
<td>206</td>
</tr>
<tr>
<td>Indiana</td>
<td>10,495</td>
<td>11,237</td>
<td>12,677</td>
<td>.22</td>
<td>.13</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td>Iowa</td>
<td>4,172</td>
<td>3,411</td>
<td>3,704</td>
<td>-.11</td>
<td>.08</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>Kansas</td>
<td>3,901</td>
<td>3,601</td>
<td>3,700</td>
<td>-.04</td>
<td>-.02</td>
<td>141</td>
<td>141</td>
</tr>
<tr>
<td>Kentucky</td>
<td>6,038</td>
<td>6,402</td>
<td>6,922</td>
<td>.15</td>
<td>.08</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Louisiana</td>
<td>9,069</td>
<td>9,059</td>
<td>9,700</td>
<td>.09</td>
<td>.07</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>Maine</td>
<td>1,933</td>
<td>1,820</td>
<td>1,903</td>
<td>0</td>
<td>.04</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Maryland</td>
<td>13,424</td>
<td>9,879</td>
<td>10,829</td>
<td>-.13</td>
<td>.1</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>9,334</td>
<td>7,443</td>
<td>7,713</td>
<td>.17</td>
<td>.03</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Michigan</td>
<td>20,215 (13,477 to 23,316)</td>
<td>18,700 (15,473 to 20,644)</td>
<td>18,713 (16,674 to 21,273)</td>
<td>-0.05 (-.24 to .36)</td>
<td>0 (-.11 to .17)</td>
<td>206 (137 to 238)</td>
<td>161 (134 to 178)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>5,498 (4,663 to 6,158)</td>
<td>5,111 (4,458 to 6,919)</td>
<td>5,604 (4,624 to 7,892)</td>
<td>0.02 (-.17 to .43)</td>
<td>0.09 (-.03 to .24)</td>
<td>117 (99 to 131)</td>
<td>84 (73 to 114)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>5,778 (3,948 to 6,648)</td>
<td>5,545 (4,782 to 6,689)</td>
<td>5,797 (4,901 to 7,530)</td>
<td>0.04 (-.22 to .62)</td>
<td>0.05 (-.11 to .22)</td>
<td>213 (145 to 245)</td>
<td>172 (149 to 207)</td>
</tr>
<tr>
<td>Missouri</td>
<td>9,765 (7,525 to 10,927)</td>
<td>9,797 (8,820 to 11,109)</td>
<td>10,824 (9,721 to 12,901)</td>
<td>0.12 (-.06 to .49)</td>
<td>0.11 (-.01 to .23)</td>
<td>169 (130 to 189)</td>
<td>142 (129 to 161)</td>
</tr>
<tr>
<td>Montana</td>
<td>1,003 (906 to 1,182)</td>
<td>1,071 (885 to 1,526)</td>
<td>1,168 (894 to 1,848)</td>
<td>0.16 (-.1 to .69)</td>
<td>0.08 (-.06 to .27)</td>
<td>113 (102 to 134)</td>
<td>90 (74 to 130)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>2,149 (1,930 to 2,439)</td>
<td>2,017 (1,744 to 2,716)</td>
<td>2,198 (1,819 to 3,149)</td>
<td>0.02 (-.16 to .39)</td>
<td>0.09 (-.03 to .21)</td>
<td>120 (108 to 137)</td>
<td>95 (82 to 130)</td>
</tr>
<tr>
<td>Nevada</td>
<td>2,739 (1,819 to 3,178)</td>
<td>4,765 (3,875 to 5,308)</td>
<td>4,910 (4,336 to 5,825)</td>
<td>0.85 (4.3 to 1.75)</td>
<td>0.04 (-.12 to .29)</td>
<td>219 (145 to 253)</td>
<td>171 (139 to 191)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1,371 (1,216 to 1,600)</td>
<td>1,363 (1,159 to 1,908)</td>
<td>1,552 (1,260 to 2,296)</td>
<td>0.13 (-.08 to .53)</td>
<td>0.13 (.01 to .28)</td>
<td>119 (105 to 138)</td>
<td>87 (74 to 120)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>15,461 (11,217 to 17,505)</td>
<td>13,049 (11,530 to 14,527)</td>
<td>13,794 (12,058 to 16,182)</td>
<td>-0.09 (-.26 to .21)</td>
<td>0.06 (-.06 to .19)</td>
<td>176 (128 to 199)</td>
<td>126 (112 to 141)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>2,039 (1,744 to 2,249)</td>
<td>2,286 (1,961 to 3,110)</td>
<td>2,499 (1,965 to 3,784)</td>
<td>0.23 (-.07 to .9)</td>
<td>0.09 (-.08 to .29)</td>
<td>133 (114 to 147)</td>
<td>103 (88 to 140)</td>
</tr>
<tr>
<td>New York</td>
<td>30,241 (26,488 to 33,538)</td>
<td>22,363 (19,041 to 31,134)</td>
<td>23,284 (18,547 to 34,318)</td>
<td>-0.23 (-.39 to .11)</td>
<td>0.04 (-.09 to .18)</td>
<td>152 (133 to 168)</td>
<td>99 (84 to 138)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>13,092 (9,506 to 14,878)</td>
<td>14,768 (12,710 to 16,551)</td>
<td>15,880 (14,128 to 19,471)</td>
<td>0.24 (.01 to .76)</td>
<td>0.08 (-.05 to .28)</td>
<td>183 (133 to 208)</td>
<td>145 (125 to 162)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>733 (646 to 930)</td>
<td>668 (554 to 990)</td>
<td>784 (602 to 1,225)</td>
<td>0.06 (-.16 to .47)</td>
<td>0.17 (.01 to .36)</td>
<td>102 (90 to 129)</td>
<td>83 (68 to 124)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Disease Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>23,333 (15,776 to 26,785)</td>
<td>20,761 (18,423 to 23,108)</td>
<td>20,570 (18,260 to 24,664)</td>
<td>-0.09 (-0.28 to 0.38)</td>
<td>-0.01 (-0.12 to 0.16)</td>
<td>195 (132 to 223)</td>
<td>152 (136 to 170)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>5,272 (4,400 to 5,753)</td>
<td>5,761 (5,173 to 7,420)</td>
<td>5,946 (4,872 to 9,102)</td>
<td>0.14 (-0.11 to 0.81)</td>
<td>0.02 (-0.12 to 0.29)</td>
<td>152 (127 to 166)</td>
<td>140 (126 to 179)</td>
</tr>
<tr>
<td>Oregon</td>
<td>4,027 (3,475 to 4,469)</td>
<td>3,914 (3,346 to 5,517)</td>
<td>4,109 (3,285 to 6,455)</td>
<td>0.02 (-0.2 to 0.61)</td>
<td>0.04 (-0.08 to 0.23)</td>
<td>126 (108 to 139)</td>
<td>88 (75 to 123)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>28,052 (18,734 to 32,491)</td>
<td>25,525 (20,228 to 28,225)</td>
<td>24,692 (21,433 to 27,626)</td>
<td>-1 (-0.26 to 0.22)</td>
<td>-0.03 (-0.14 to 0.14)</td>
<td>197 (132 to 228)</td>
<td>160 (129 to 176)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1,289 (1,125 to 1,695)</td>
<td>1,084 (865 to 1,681)</td>
<td>1,113 (825 to 1,894)</td>
<td>-0.15 (-0.33 to 0.19)</td>
<td>0.02 (-0.12 to 0.17)</td>
<td>111 (97 to 144)</td>
<td>82 (66 to 127)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>7,599 (5,120 to 8,833)</td>
<td>8,477 (6,882 to 9,460)</td>
<td>9,883 (8,348 to 11,362)</td>
<td>0.33 (0.07 to 0.84)</td>
<td>0.17 (0.02 to 0.35)</td>
<td>209 (141 to 243)</td>
<td>168 (137 to 188)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>823 (723 to 1,071)</td>
<td>821 (669 to 1,241)</td>
<td>957 (743 to 1,526)</td>
<td>-0.15 (-0.07 to 0.56)</td>
<td>0.16 (0.03 to 0.32)</td>
<td>106 (93 to 137)</td>
<td>87 (71 to 132)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>9,452 (7,153 to 10,633)</td>
<td>9,443 (8,395 to 12,574)</td>
<td>9,560 (7,860 to 14,821)</td>
<td>0.04 (-0.23 to 0.82)</td>
<td>0.01 (-0.14 to 0.27)</td>
<td>175 (134 to 196)</td>
<td>136 (121 to 179)</td>
</tr>
<tr>
<td>Texas</td>
<td>28,999 (21,866 to 32,505)</td>
<td>33,609 (30,668 to 38,720)</td>
<td>40,071 (35,403 to 49,167)</td>
<td>0.4 (0.14 to 0.93)</td>
<td>0.19 (0.07 to 0.34)</td>
<td>175 (130 to 196)</td>
<td>137 (125 to 158)</td>
</tr>
<tr>
<td>Utah</td>
<td>1,713 (1,493 to 1,984)</td>
<td>2,268 (1,958 to 3,054)</td>
<td>2,805 (2,538 to 3,861)</td>
<td>0.64 (0.35 to 1.21)</td>
<td>0.23 (0.11 to 0.38)</td>
<td>114 (97 to 133)</td>
<td>95 (82 to 128)</td>
</tr>
<tr>
<td>Vermont</td>
<td>730 (640 to 826)</td>
<td>689 (596 to 934)</td>
<td>739 (601 to 1,076)</td>
<td>0.01 (-0.19 to 0.39)</td>
<td>0.07 (-0.07 to 0.21)</td>
<td>123 (108 to 139)</td>
<td>89 (78 to 120)</td>
</tr>
<tr>
<td>Virginia</td>
<td>11,600 (8,166 to 13,212)</td>
<td>12,225 (10,317 to 13,370)</td>
<td>12,412 (11,018 to 14,616)</td>
<td>0.09 (-0.11 to 0.53)</td>
<td>0.02 (-1.1 to 0.2)</td>
<td>183 (129 to 208)</td>
<td>141 (119 to 154)</td>
</tr>
<tr>
<td>Washington</td>
<td>7,245 (5,642 to 8,049)</td>
<td>7,385 (6,612 to 9,240)</td>
<td>8,607 (7,371 to 11,374)</td>
<td>0.2 (-0.04 to 0.71)</td>
<td>0.16 (0.03 to 0.29)</td>
<td>141 (110 to 157)</td>
<td>101 (90 to 125)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th></th>
<th>Alabama</th>
<th>Alaska</th>
<th>Arizona</th>
<th>Arkansas</th>
<th>California</th>
<th>Colorado</th>
<th>Connecticut</th>
<th>Delaware</th>
<th>District of Columbia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,177</td>
<td>8,416</td>
<td>489</td>
<td>2,297</td>
<td>2,227</td>
<td>3,468</td>
<td>10,601</td>
<td>2,941</td>
<td>3,227</td>
</tr>
<tr>
<td></td>
<td>(2,702 to 3,489)</td>
<td>(6,150 to 9,523)</td>
<td>(435 to 621)</td>
<td>(2,044 to 2,604)</td>
<td>(2,817 to 3,827)</td>
<td>(2,840 to 3,532)</td>
<td>(9,284 to 12,137)</td>
<td>(2,467 to 3,135)</td>
<td>(1,752 to 2,366)</td>
</tr>
<tr>
<td></td>
<td>2,851</td>
<td>7,495</td>
<td>586</td>
<td>2,781</td>
<td>2,018</td>
<td>1,925</td>
<td>9,840</td>
<td>3,197</td>
<td>2,018</td>
</tr>
<tr>
<td></td>
<td>(2,483 to 3,964)</td>
<td>(6,865 to 8,579)</td>
<td>(478 to 869)</td>
<td>(2,467 to 3,135)</td>
<td>(1,752 to 2,366)</td>
<td>(1,641 to 2,241)</td>
<td>(8,659 to 11,256)</td>
<td>(2,834 to 3,634)</td>
<td>(2,152 to 2,366)</td>
</tr>
<tr>
<td></td>
<td>3,045</td>
<td>7,831</td>
<td>675</td>
<td>3,197</td>
<td>1,925</td>
<td>1,925</td>
<td>10,414</td>
<td>3,197</td>
<td>1,925</td>
</tr>
<tr>
<td></td>
<td>(2,523 to 4,532)</td>
<td>(6,940 to 9,855)</td>
<td>(518 to 1,055)</td>
<td>(2,834 to 3,634)</td>
<td>(1,641 to 2,241)</td>
<td>(1,641 to 2,241)</td>
<td>(8,951 to 12,167)</td>
<td>(2,834 to 3,634)</td>
<td>(1,641 to 2,241)</td>
</tr>
<tr>
<td></td>
<td>-.04</td>
<td>-.05</td>
<td>.37</td>
<td>.39</td>
<td>-.4</td>
<td>.04</td>
<td>-.02</td>
<td>.59</td>
<td>-.4</td>
</tr>
<tr>
<td></td>
<td>(-.24 to .42)</td>
<td>(-.24 to .41)</td>
<td>(-.11 to .85)</td>
<td>(.29 to .52)</td>
<td>(-.47 to -.32)</td>
<td>(-.15 to .07)</td>
<td>(-.12 to .09)</td>
<td>(.29 to .52)</td>
<td>(-.47 to -.32)</td>
</tr>
<tr>
<td></td>
<td>.06</td>
<td>.04</td>
<td>.15</td>
<td>.15</td>
<td>-.04</td>
<td>.471</td>
<td>.06</td>
<td>.15</td>
<td>-.04</td>
</tr>
<tr>
<td></td>
<td>(-.05 to .21)</td>
<td>(-.07 to .21)</td>
<td>(-.01 to .31)</td>
<td>(.07 to .25)</td>
<td>(-.15 to .07)</td>
<td>(410 to 561)</td>
<td>(-.02 to .15)</td>
<td>(.07 to .25)</td>
<td>(-.15 to .07)</td>
</tr>
<tr>
<td></td>
<td>151</td>
<td>157</td>
<td>109</td>
<td>313</td>
<td>471</td>
<td>305</td>
<td>270</td>
<td>258</td>
<td>471</td>
</tr>
<tr>
<td></td>
<td>(129 to 165)</td>
<td>(113 to 177)</td>
<td>(97 to 138)</td>
<td>(279 to 355)</td>
<td>(410 to 561)</td>
<td>(264 to 359)</td>
<td>(237 to 310)</td>
<td>(229 to 291)</td>
<td>(410 to 561)</td>
</tr>
<tr>
<td></td>
<td>124</td>
<td>112</td>
<td>96</td>
<td>239</td>
<td>253</td>
<td>305</td>
<td>210</td>
<td>239</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>(107 to 172)</td>
<td>(103 to 130)</td>
<td>(79 to 143)</td>
<td>(211 to 272)</td>
<td>(215 to 294)</td>
<td>(184 to 241)</td>
<td>(184 to 241)</td>
<td>(211 to 272)</td>
<td>(215 to 294)</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>104</td>
<td>93</td>
<td>239</td>
<td>253</td>
<td>305</td>
<td>201</td>
<td>239</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>(104 to 186)</td>
<td>(92 to 131)</td>
<td>(71 to 146)</td>
<td>(211 to 272)</td>
<td>(215 to 294)</td>
<td>(172 to 237)</td>
<td>(172 to 237)</td>
<td>(211 to 272)</td>
<td>(215 to 294)</td>
</tr>
<tr>
<td></td>
<td>-.16</td>
<td>-.32</td>
<td>-.15</td>
<td>-.24</td>
<td>-.46</td>
<td>-.17</td>
<td>-.25</td>
<td>-.24</td>
<td>-.46</td>
</tr>
<tr>
<td></td>
<td>(-.33 to .24)</td>
<td>(-.46 to .02)</td>
<td>(-.32 to .16)</td>
<td>(-.3 to -.17)</td>
<td>(-.53 to -.39)</td>
<td>(-.26 to -.07)</td>
<td>(-.33 to -.18)</td>
<td>(-.3 to -.17)</td>
<td>(-.53 to -.39)</td>
</tr>
<tr>
<td></td>
<td>.01</td>
<td>-.07</td>
<td>-.03</td>
<td>-.17</td>
<td>-.1</td>
<td>-.01</td>
<td>-.04</td>
<td>-.08</td>
<td>-.1</td>
</tr>
<tr>
<td></td>
<td>(-.09 to .14)</td>
<td>(-.17 to .07)</td>
<td>(-.16 to .1)</td>
<td>(-.26 to -.07)</td>
<td>(-.26 to -.07)</td>
<td>(-.1 to .01)</td>
<td>(-.12 to .04)</td>
<td>(-.14 to 0)</td>
<td>(-.26 to -.07)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>State</th>
<th>Value1</th>
<th>Value2</th>
<th>Value3</th>
<th>Lower Limit1</th>
<th>Lower Limit2</th>
<th>Lower Limit3</th>
<th>Lower Limit4</th>
<th>Upper Limit1</th>
<th>Upper Limit2</th>
<th>Upper Limit3</th>
<th>Upper Limit4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>41,941</td>
<td>50,038</td>
<td>58,930</td>
<td>.41</td>
<td>.18</td>
<td>235</td>
<td>200</td>
<td>.18</td>
<td>200</td>
<td>.18</td>
<td>235</td>
</tr>
<tr>
<td>Georgia</td>
<td>19,349</td>
<td>24,776</td>
<td>30,342</td>
<td>.57</td>
<td>.23</td>
<td>302</td>
<td>254</td>
<td>.19</td>
<td>196</td>
<td>.19</td>
<td>193</td>
</tr>
<tr>
<td>Hawaii</td>
<td>2,833</td>
<td>3,334</td>
<td>3,973</td>
<td>.4</td>
<td>.19</td>
<td>244</td>
<td>238</td>
<td>.23</td>
<td>234</td>
<td>.23</td>
<td>232</td>
</tr>
<tr>
<td>Idaho</td>
<td>3,017</td>
<td>4,031</td>
<td>5,087</td>
<td>.69</td>
<td>.26</td>
<td>280</td>
<td>238</td>
<td>.16</td>
<td>213</td>
<td>.16</td>
<td>213</td>
</tr>
<tr>
<td>Illinois</td>
<td>35,569</td>
<td>34,742</td>
<td>35,981</td>
<td>.01</td>
<td>.04</td>
<td>278</td>
<td>272</td>
<td>.13</td>
<td>213</td>
<td>.13</td>
<td>213</td>
</tr>
<tr>
<td>Indiana</td>
<td>17,661</td>
<td>20,567</td>
<td>23,578</td>
<td>.34</td>
<td>.15</td>
<td>283</td>
<td>272</td>
<td>.13</td>
<td>232</td>
<td>.13</td>
<td>232</td>
</tr>
<tr>
<td>Iowa</td>
<td>9,235</td>
<td>8,494</td>
<td>9,256</td>
<td>9</td>
<td>.09</td>
<td>262</td>
<td>210</td>
<td>.21</td>
<td>207</td>
<td>.21</td>
<td>207</td>
</tr>
<tr>
<td>Kansas</td>
<td>7,852</td>
<td>8,025</td>
<td>8,877</td>
<td>.13</td>
<td>.11</td>
<td>268</td>
<td>234</td>
<td>.13</td>
<td>232</td>
<td>.13</td>
<td>232</td>
</tr>
<tr>
<td>Kentucky</td>
<td>11,540</td>
<td>13,565</td>
<td>15,342</td>
<td>.33</td>
<td>.13</td>
<td>278</td>
<td>266</td>
<td>.05</td>
<td>263</td>
<td>.05</td>
<td>263</td>
</tr>
<tr>
<td>Louisiana</td>
<td>13,585</td>
<td>14,086</td>
<td>15,854</td>
<td>.17</td>
<td>.13</td>
<td>312</td>
<td>272</td>
<td>.13</td>
<td>272</td>
<td>.13</td>
<td>272</td>
</tr>
<tr>
<td>Maine</td>
<td>3,982</td>
<td>4,140</td>
<td>4,640</td>
<td>.17</td>
<td>.12</td>
<td>275</td>
<td>226</td>
<td>.2</td>
<td>219</td>
<td>.2</td>
<td>219</td>
</tr>
<tr>
<td>Maryland</td>
<td>15,763</td>
<td>17,123</td>
<td>19,003</td>
<td>.21</td>
<td>.11</td>
<td>316</td>
<td>259</td>
<td>.23</td>
<td>242</td>
<td>.23</td>
<td>242</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>18,527</td>
<td>17,957</td>
<td>18,688</td>
<td>.01</td>
<td>.04</td>
<td>260</td>
<td>213</td>
<td>.25</td>
<td>194</td>
<td>.25</td>
<td>194</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Male Death Rate (MDR)</th>
<th>Female Death Rate (FDR)</th>
<th>Male Death Rate Change (MDRC)</th>
<th>Female Death Rate Change (FDRC)</th>
<th>Male Mortality Rate (MMR)</th>
<th>Female Mortality Rate (FMR)</th>
<th>Male Mortality Rate Change (MMRC)</th>
<th>Female Mortality Rate Change (FMRC)</th>
<th>Male Risk Factor Rate (MRF)</th>
<th>Female Risk Factor Rate (FFR)</th>
<th>Male Risk Factor Rate Change (MRFRC)</th>
<th>Female Risk Factor Rate Change (FFRRC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>25,535 (22,802 to 29,048)</td>
<td>27,589 (24,482 to 31,180)</td>
<td>.23 (.13 to .34)</td>
<td>.14 (.07 to .22)</td>
<td>253 (225 to 289)</td>
<td>225 (199 to 254)</td>
<td>.09 (-.17 to -.01)</td>
<td>.02 (-.05 to .09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>11,808 (10,443 to 13,511)</td>
<td>12,368 (10,908 to 14,121)</td>
<td>.22 (.11 to .34)</td>
<td>.17 (.08 to .26)</td>
<td>239 (211 to 274)</td>
<td>193 (170 to 222)</td>
<td>.2 (-.28 to -.13)</td>
<td>.02 (-.09 to .06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mississippi</td>
<td>8,798 (7,989 to 9,827)</td>
<td>9,957 (8,942 to 11,162)</td>
<td>11,002 (9,606 to 12,495)</td>
<td>.25 (.1 to .4)</td>
<td>313 (284 to 349)</td>
<td>298 (267 to 332)</td>
<td>.06 (-.18 to .05)</td>
<td>.02 (-.12 to .09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>16,736 (14,826 to 19,016)</td>
<td>18,391 (16,409 to 20,754)</td>
<td>.25 (.15 to .36)</td>
<td>.14 (.06 to .22)</td>
<td>272 (241 to 309)</td>
<td>252 (226 to 285)</td>
<td>.07 (-.15 to .01)</td>
<td>0 (-.07 to .08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montana</td>
<td>2,558 (2,240 to 2,912)</td>
<td>2,920 (2,577 to 3,305)</td>
<td>3,408 (2,939 to 3,931)</td>
<td>.33 (.2 to .47)</td>
<td>277 (242 to 316)</td>
<td>233 (206 to 264)</td>
<td>.18 (-.26 to -.1)</td>
<td>.03 (-.11 to .07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebraska</td>
<td>5,411 (4,773 to 6,191)</td>
<td>5,273 (4,645 to 5,989)</td>
<td>5,966 (5,199 to 6,876)</td>
<td>.1 (.01 to .2)</td>
<td>286 (251 to 328)</td>
<td>236 (207 to 268)</td>
<td>.18 (-.24 to -.11)</td>
<td>0 (-.08 to .07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>3,441 (3,065 to 3,870)</td>
<td>6,593 (5,914 to 7,366)</td>
<td>8,138 (7,168 to 9,287)</td>
<td>1.37 (1.16 to 1.6)</td>
<td>279 (249 to 313)</td>
<td>234 (210 to 261)</td>
<td>.23 (-.3 to -.15)</td>
<td>.08 (-.15 to -.01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>3,278 (2,890 to 3,798)</td>
<td>3,493 (3,080 to 3,973)</td>
<td>4,021 (3,540 to 4,632)</td>
<td>.23 (.13 to .33)</td>
<td>277 (244 to 322)</td>
<td>212 (187 to 242)</td>
<td>.27 (-.33 to -.2)</td>
<td>.04 (-.11 to .04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>28,051 (24,849 to 32,000)</td>
<td>27,711 (24,332 to 31,698)</td>
<td>28,927 (25,030 to 33,274)</td>
<td>.03 (-.05 to .12)</td>
<td>308 (273 to 351)</td>
<td>254 (223 to 292)</td>
<td>.24 (-.3 to -.17)</td>
<td>.08 (-.14 to 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>3,597 (3,164 to 4,154)</td>
<td>4,775 (4,191 to 5,458)</td>
<td>5,586 (4,816 to 6,463)</td>
<td>.55 (-.4 to .72)</td>
<td>235 (206 to 271)</td>
<td>205 (180 to 235)</td>
<td>.14 (-.22 to -.04)</td>
<td>.01 (-.1 to .08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>53,446 (47,453 to 60,911)</td>
<td>47,925 (41,405 to 55,655)</td>
<td>52,280 (44,753 to 61,336)</td>
<td>-.02 (-.12 to .08)</td>
<td>258 (228 to 295)</td>
<td>202 (175 to 236)</td>
<td>.23 (-.31 to -.15)</td>
<td>.02 (-.1 to .06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>21,530 (19,361 to 24,217)</td>
<td>25,928 (23,282 to 28,954)</td>
<td>31,121 (27,769 to 34,838)</td>
<td>.45 (.33 to .57)</td>
<td>294 (264 to 330)</td>
<td>244 (219 to 272)</td>
<td>.21 (-.27 to -.14)</td>
<td>.04 (-.11 to .03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>1,824 (1,586 to 2,127)</td>
<td>1,662 (1,461 to 1,898)</td>
<td>1,867 (1,601 to 2,163)</td>
<td>.02 (-.06 to .13)</td>
<td>238 (207 to 278)</td>
<td>192 (168 to 221)</td>
<td>-.2 (-.27 to -.12)</td>
<td>-.01 (-.09 to .08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Total Deaths (95% CI)</th>
<th>Death Rate (95% CI)</th>
<th>Change in Death Rate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>33,952 (30,256 to 38,328)</td>
<td>.14 (.04 to .23)</td>
<td>-12 (-19 to -.04)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>9,461 (8,408 to 10,712)</td>
<td>.24 (.14 to .36)</td>
<td>-12 (-15 to -.01)</td>
</tr>
<tr>
<td>Oregon</td>
<td>9,267 (8,113 to 10,710)</td>
<td>.47 (.34 to .6)</td>
<td>-16 (-23 to -.09)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>48,903 (43,769 to 55,592)</td>
<td>0 (-.08 to .08)</td>
<td>-19 (-26 to -.13)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>3,079 (2,690 to 3,567)</td>
<td>-.08 (-.16 to -.02)</td>
<td>-25 (-32 to -.17)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>11,856 (10,596 to 13,345)</td>
<td>.55 (.41 to .72)</td>
<td>-14 (-23 to -.11)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>1,975 (1,728 to 2,298)</td>
<td>-.2 (.09 to .32)</td>
<td>.02 (.07 to .12)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>14,672 (12,987 to 16,424)</td>
<td>.54 (.41 to .67)</td>
<td>-.15 (-.22 to -.11)</td>
</tr>
<tr>
<td>Texas</td>
<td>46,393 (41,345 to 52,864)</td>
<td>.63 (.5 to .77)</td>
<td>.04 (-.11 to .05)</td>
</tr>
<tr>
<td>Utah</td>
<td>4,037 (3,487 to 4,694)</td>
<td>.85 (.71 to 1.02)</td>
<td>-12 (-19 to -.03)</td>
</tr>
<tr>
<td>Vermont</td>
<td>1,851 (1,635 to 2,116)</td>
<td>1 (.0 to .2)</td>
<td>-29 (-.35 to -.23)</td>
</tr>
<tr>
<td>Virginia</td>
<td>19,206 (17,159 to 21,837)</td>
<td>.33 (.23 to .44)</td>
<td>-.23 (-.29 to -.16)</td>
</tr>
<tr>
<td>Washington</td>
<td>14,062 (12,290 to 16,266)</td>
<td>.48 (.36 to .62)</td>
<td>-19 (-.26 to -.12)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Total Cases (95% CI)</th>
<th>Cardiovascular Disease Cases (95% CI)</th>
<th>Peripheral artery disease cases (95% CI)</th>
<th>Change in cases (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Virginia</td>
<td>6,595 (5,884 to 7,452)</td>
<td>6,640 (5,907 to 7,541)</td>
<td>7,289 (6,469 to 8,275)</td>
<td>.11 (.02 to .21)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>14,899 (13,122 to 16,873)</td>
<td>15,468 (13,826 to 17,312)</td>
<td>17,604 (15,690 to 19,694)</td>
<td>.14 (.06 to .22)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>1,380 (1,215 to 1,582)</td>
<td>1,700 (1,502 to 1,919)</td>
<td>1,986 (1,720 to 2,293)</td>
<td>.44 (.31 to .59)</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>1,568 (1,074 to 2,054)</td>
<td>2,304 (1,627 to 3,612)</td>
<td>2,840 (2,087 to 4,601)</td>
<td>.84 (.42 to 1.2)</td>
</tr>
<tr>
<td>Alabama</td>
<td>1,168 (851 to 1,583)</td>
<td>2,295 (1,729 to 3,207)</td>
<td>3,226 (2,411 to 4,625)</td>
<td>1.78 (1.3 to 2.3)</td>
</tr>
<tr>
<td>Alaska</td>
<td>971 (683 to 1,305)</td>
<td>1,392 (988 to 2,053)</td>
<td>1,698 (1,223 to 2,080)</td>
<td>0.76 (.38 to 1.2)</td>
</tr>
<tr>
<td>Arizona</td>
<td>8,060 (5,940 to 11,181)</td>
<td>11,571 (8,784 to 17,178)</td>
<td>14,824 (10,693 to 23,537)</td>
<td>.84 (.49 to 1.3)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>815 (601 to 1,151)</td>
<td>1,341 (1,030 to 1,957)</td>
<td>1,916 (1,415 to 2,977)</td>
<td>.36 (.95 to 2.1)</td>
</tr>
<tr>
<td>California</td>
<td>272 (188 to 368)</td>
<td>429 (316 to 596)</td>
<td>575 (431 to 831)</td>
<td>1.13 (.74 to 2.0)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>312 (198 to 428)</td>
<td>301 (205 to 442)</td>
<td>323 (233 to 500)</td>
<td>.05 (-.16 to .39)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Maximum Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>6,048 (4,405 to 8,244)</td>
</tr>
<tr>
<td>Georgia</td>
<td>2,191 (1,419 to 2,881)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>278 (206 to 397)</td>
</tr>
<tr>
<td>Idaho</td>
<td>299 (211 to 401)</td>
</tr>
<tr>
<td>Illinois</td>
<td>4,276 (3,025 to 5,777)</td>
</tr>
<tr>
<td>Indiana</td>
<td>2,146 (1,511 to 2,897)</td>
</tr>
<tr>
<td>Iowa</td>
<td>1,118 (832 to 1,532)</td>
</tr>
<tr>
<td>Kansas</td>
<td>900 (669 to 1,228)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1,412 (982 to 1,888)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>1,541 (1,005 to 2,025)</td>
</tr>
<tr>
<td>Maine</td>
<td>493 (332 to 649)</td>
</tr>
<tr>
<td>Maryland</td>
<td>1,811 (1,259 to 2,487)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>2,277 (1,501 to 3,021)</td>
</tr>
<tr>
<td></td>
<td>Minimum Cases</td>
</tr>
<tr>
<td>Florida</td>
<td>9,551 (7,252 to 13,135)</td>
</tr>
<tr>
<td>Georgia</td>
<td>3,614 (2,587 to 5,082)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>438 (324 to 681)</td>
</tr>
<tr>
<td>Idaho</td>
<td>484 (365 to 703)</td>
</tr>
<tr>
<td>Illinois</td>
<td>5,413 (4,021 to 7,820)</td>
</tr>
<tr>
<td>Indiana</td>
<td>2,994 (2,201 to 4,319)</td>
</tr>
<tr>
<td>Iowa</td>
<td>1,339 (992 to 2,006)</td>
</tr>
<tr>
<td>Kansas</td>
<td>1,138 (867 to 1,701)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>2,163 (1,519 to 3,167)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>2,102 (1,464 to 3,060)</td>
</tr>
<tr>
<td>Maine</td>
<td>673 (495 to 903)</td>
</tr>
<tr>
<td>Maryland</td>
<td>2,509 (1,893 to 3,565)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>2,749 (2,043 to 3,761)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>State</th>
<th>2017 (95% CI)</th>
<th>2016 (95% CI)</th>
<th>2015 (95% CI)</th>
<th>2014 (95% CI)</th>
<th>2013 (95% CI)</th>
<th>2012 (95% CI)</th>
<th>2011 (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>3,244 (2,417 to 4,457)</td>
<td>4,683 (3,492 to 7,227)</td>
<td>5,602 (4,158 to 8,896)</td>
<td>.73 (.41 to 1.55)</td>
<td>.19 (.06 to .31)</td>
<td>.81 (23 to 43)</td>
<td>.36 (26 to 56)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>1,504 (1,041 to 1,974)</td>
<td>1,864 (1,376 to 2,615)</td>
<td>2,341 (1,749 to 3,507)</td>
<td>.57 (.26 to 1.28)</td>
<td>.25 (.08 to .42)</td>
<td>.28 (20 to 37)</td>
<td>.27 (20 to 38)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>901 (673 to 1,234)</td>
<td>1,244 (874 to 2,469)</td>
<td>1,568 (1,068 to 3,162)</td>
<td>.73 (.3 to 2.02)</td>
<td>.26 (.1 to .44)</td>
<td>.30 (22 to 41)</td>
<td>.35 (24 to 68)</td>
</tr>
<tr>
<td>Missouri</td>
<td>2,087 (1,474 to 2,800)</td>
<td>2,847 (2,089 to 4,157)</td>
<td>3,466 (2,560 to 5,311)</td>
<td>.67 (.36 to 1.58)</td>
<td>.22 (.08 to .35)</td>
<td>.31 (22 to 41)</td>
<td>.36 (26 to 52)</td>
</tr>
<tr>
<td>Montana</td>
<td>290 (197 to 379)</td>
<td>421 (319 to 567)</td>
<td>544 (404 to 767)</td>
<td>.9 (.51 to 1.81)</td>
<td>.29 (.12 to .48)</td>
<td>.29 (20 to 38)</td>
<td>.30 (23 to 41)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>584 (430 to 798)</td>
<td>718 (540 to 1,081)</td>
<td>868 (650 to 1,360)</td>
<td>.49 (.21 to 1.24)</td>
<td>.2 (.06 to .34)</td>
<td>.27 (20 to 37)</td>
<td>.29 (22 to 44)</td>
</tr>
<tr>
<td>Nevada</td>
<td>390 (289 to 530)</td>
<td>1,008 (755 to 1,387)</td>
<td>1,426 (1,069 to 2,106)</td>
<td>.26 (2.03 to 3.97)</td>
<td>.41 (.23 to .6)</td>
<td>.33 (24 to 44)</td>
<td>.36 (27 to 49)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>376 (266 to 507)</td>
<td>557 (427 to 789)</td>
<td>722 (548 to 1,078)</td>
<td>.94 (.56 to 1.83)</td>
<td>.29 (.13 to .44)</td>
<td>.31 (22 to 42)</td>
<td>.32 (25 to 45)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>3,211 (2,282 to 4,419)</td>
<td>3,922 (2,980 to 5,517)</td>
<td>4,553 (3,388 to 6,743)</td>
<td>.43 (.17 to 1.04)</td>
<td>.16 (.02 to .3)</td>
<td>.33 (24 to 46)</td>
<td>.33 (25 to 46)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>420 (295 to 564)</td>
<td>730 (558 to 1,034)</td>
<td>975 (735 to 1,442)</td>
<td>1.35 (.86 to 2.61)</td>
<td>.33 (.16 to .52)</td>
<td>.27 (19 to 36)</td>
<td>.29 (23 to 42)</td>
</tr>
<tr>
<td>New York</td>
<td>6,382 (4,768 to 9,191)</td>
<td>7,210 (5,143 to 11,425)</td>
<td>8,382 (5,743 to 14,081)</td>
<td>.31 (.06 to .91)</td>
<td>.16 (.03 to .31)</td>
<td>.29 (21 to 41)</td>
<td>.28 (20 to 44)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>2,424 (1,617 to 3,215)</td>
<td>3,923 (2,750 to 5,506)</td>
<td>5,198 (3,834 to 7,606)</td>
<td>1.17 (.74 to 2.35)</td>
<td>.33 (.16 to .49)</td>
<td>.32 (21 to 43)</td>
<td>.35 (25 to 49)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>232 (168 to 311)</td>
<td>274 (202 to 410)</td>
<td>325 (236 to 513)</td>
<td>.41 (.11 to 1.17)</td>
<td>.18 (.02 to .34)</td>
<td>.27 (19 to 36)</td>
<td>.28 (20 to 42)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Ohio Death Rate (95% CI)</th>
<th>Dakota Death Rate (95% CI)</th>
<th>Texas Death Rate (95% CI)</th>
<th>Utah Death Rate (95% CI)</th>
<th>Virginia Death Rate (95% CI)</th>
<th>Washington Death Rate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>4,374 (3,029 to 5,823)</td>
<td>6,150 (4,290 to 8,621)</td>
<td>7,045 (5,136 to 10,302)</td>
<td>.63 (.33 to 1.45)</td>
<td>.14 (0 to .28)</td>
<td>33 (23 to 44)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1,123 (835 to 1,582)</td>
<td>1,667 (1,216 to 2,758)</td>
<td>2,027 (1,414 to 3,626)</td>
<td>.8 (.43 to 2.14)</td>
<td>.2 (.05 to .4)</td>
<td>28 (21 to 40)</td>
</tr>
<tr>
<td>Oregon</td>
<td>1,078 (747 to 1,412)</td>
<td>1,551 (1,169 to 2,191)</td>
<td>2,003 (1,500 to 2,904)</td>
<td>.87 (.53 to 1.7)</td>
<td>.29 (.15 to .43)</td>
<td>30 (21 to 39)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>5,670 (3,958 to 7,486)</td>
<td>6,884 (5,066 to 9,841)</td>
<td>7,988 (5,946 to 11,557)</td>
<td>.42 (.18 to 1.02)</td>
<td>.16 (.04 to .27)</td>
<td>34 (24 to 45)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>426 (303 to 587)</td>
<td>507 (387 to 719)</td>
<td>578 (422 to 892)</td>
<td>.37 (.09 to 1.01)</td>
<td>.14 (-.02 to .3)</td>
<td>31 (22 to 42)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>1,347 (837 to 1,773)</td>
<td>2,239 (1,490 to 3,010)</td>
<td>3,091 (2,143 to 4,423)</td>
<td>1.34 (.86 to 2.77)</td>
<td>.38 (.19 to .58)</td>
<td>37 (23 to 48)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>267 (184 to 350)</td>
<td>340 (246 to 481)</td>
<td>427 (314 to 642)</td>
<td>.62 (.28 to 1.49)</td>
<td>.25 (.1 to .42)</td>
<td>28 (19 to 36)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>1,893 (1,236 to 2,493)</td>
<td>3,014 (2,100 to 4,302)</td>
<td>3,967 (2,822 to 5,913)</td>
<td>1.13 (.7 to 2.41)</td>
<td>.32 (.15 to .47)</td>
<td>32 (21 to 42)</td>
</tr>
<tr>
<td>Texas</td>
<td>4,981 (3,472 to 6,650)</td>
<td>8,660 (6,009 to 11,914)</td>
<td>11,910 (8,672 to 17,452)</td>
<td>1.41 (.97 to 2.71)</td>
<td>.37 (.2 to .56)</td>
<td>30 (21 to 40)</td>
</tr>
<tr>
<td>Utah</td>
<td>351 (253 to 480)</td>
<td>587 (446 to 859)</td>
<td>819 (604 to 1,257)</td>
<td>1.35 (.89 to 2.42)</td>
<td>.39 (.22 to .58)</td>
<td>25 (18 to 34)</td>
</tr>
<tr>
<td>Vermont</td>
<td>205 (134 to 271)</td>
<td>275 (209 to 374)</td>
<td>342 (265 to 488)</td>
<td>.69 (.35 to 1.42)</td>
<td>.25 (.08 to .4)</td>
<td>32 (21 to 42)</td>
</tr>
<tr>
<td>Virginia</td>
<td>1,959 (1,395 to 2,693)</td>
<td>3,011 (2,265 to 4,386)</td>
<td>3,845 (2,926 to 5,928)</td>
<td>.98 (.59 to 1.91)</td>
<td>.27 (.12 to .44)</td>
<td>31 (22 to 42)</td>
</tr>
<tr>
<td>Washington</td>
<td>1,512 (1,105 to 2,068)</td>
<td>2,332 (1,794 to 3,436)</td>
<td>3,064 (2,310 to 4,725)</td>
<td>1.04 (.64 to 2.04)</td>
<td>.31 (.16 to .47)</td>
<td>28 (20 to 38)</td>
</tr>
<tr>
<td>State</td>
<td>Rheumatic heart disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Virginia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>4,060 (3,782 to 4,347)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alaska</td>
<td>348 (320 to 377)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arizona</td>
<td>2,463 (2,280 to 2,640)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arkansas</td>
<td>2,100 (1,975 to 2,234)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>20,549 (18,975 to 22,322)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>2,691 (2,525 to 2,879)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>2,636 (2,260 to 2,881)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>538 (494 to 580)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>District of Columbia</td>
<td>642 (550 to 786)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>Year (Min to Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>10,075 (9,322 to 10,926)</td>
<td>7,968 (7,423 to 8,554)</td>
<td>9,112 (8,233 to 10,044)</td>
<td>-0.09 (-2 to 0.02)</td>
<td>0.14 (.01 to 0.28)</td>
<td>57 (53 to 62)</td>
<td>31 (29 to 34)</td>
<td>29 (26 to 32)</td>
<td>-0.5 (-0.56 to -0.43)</td>
<td>-0.09 (-2 to 0.02)</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>4,665 (4,303 to 5,095)</td>
<td>5,152 (4,776 to 5,623)</td>
<td>6,325 (5,627 to 7,103)</td>
<td>0.36 (0.17 to 0.55)</td>
<td>0.23 (0.08 to 0.4)</td>
<td>73 (67 to 79)</td>
<td>53 (49 to 58)</td>
<td>50 (45 to 56)</td>
<td>-0.31 (-0.4 to -0.21)</td>
<td>-0.05 (-0.16 to 0.08)</td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>751 (698 to 812)</td>
<td>702 (660 to 751)</td>
<td>818 (746 to 890)</td>
<td>0.09 (-0.03 to 0.22)</td>
<td>0.17 (0.06 to 0.28)</td>
<td>65 (60 to 70)</td>
<td>41 (39 to 44)</td>
<td>40 (36 to 43)</td>
<td>-0.39 (-0.45 to -0.31)</td>
<td>-0.04 (-0.13 to 0.06)</td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>895 (831 to 964)</td>
<td>911 (846 to 975)</td>
<td>1,148 (1,019 to 1,293)</td>
<td>0.28 (0.11 to 0.47)</td>
<td>0.26 (0.1 to 0.43)</td>
<td>83 (77 to 89)</td>
<td>53 (50 to 57)</td>
<td>52 (46 to 59)</td>
<td>-0.37 (-0.45 to -0.27)</td>
<td>-0.02 (-0.15 to 0.11)</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>9,254 (8,640 to 9,928)</td>
<td>6,404 (6,015 to 6,797)</td>
<td>6,714 (6,122 to 7,299)</td>
<td>-0.27 (-0.36 to -0.19)</td>
<td>0.05 (-0.05 to 0.17)</td>
<td>73 (68 to 78)</td>
<td>42 (40 to 45)</td>
<td>39 (35 to 42)</td>
<td>-0.47 (-0.53 to -0.41)</td>
<td>-0.08 (-0.17 to 0.02)</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>4,522 (4,214 to 4,805)</td>
<td>3,851 (3,603 to 4,112)</td>
<td>4,436 (3,954 to 4,960)</td>
<td>-0.02 (-0.15 to 0.12)</td>
<td>0.15 (0.01 to 0.29)</td>
<td>73 (68 to 77)</td>
<td>50 (47 to 54)</td>
<td>50 (45 to 57)</td>
<td>-0.31 (-0.4 to -0.2)</td>
<td>0 (-0.12 to 0.13)</td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td>1,952 (1,822 to 2,078)</td>
<td>1,432 (1,341 to 1,525)</td>
<td>1,536 (1,375 to 1,709)</td>
<td>-0.21 (-0.3 to -0.11)</td>
<td>0.07 (-0.03 to 0.19)</td>
<td>55 (51 to 59)</td>
<td>35 (33 to 37)</td>
<td>34 (30 to 38)</td>
<td>-0.39 (-0.46 to -0.31)</td>
<td>-0.03 (-0.14 to 0.08)</td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>1,887 (1,764 to 2,016)</td>
<td>1,653 (1,548 to 1,754)</td>
<td>1,783 (1,567 to 2,017)</td>
<td>-0.05 (-0.18 to -0.08)</td>
<td>0.08 (-0.05 to 0.22)</td>
<td>65 (60 to 69)</td>
<td>48 (44 to 51)</td>
<td>45 (40 to 52)</td>
<td>-0.3 (-0.39 to -0.2)</td>
<td>-0.04 (-0.16 to 0.09)</td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>3,235 (3,038 to 3,432)</td>
<td>2,948 (2,767 to 3,123)</td>
<td>3,339 (3,034 to 3,643)</td>
<td>0.03 (-0.08 to 0.16)</td>
<td>0.13 (0.03 to 0.25)</td>
<td>78 (73 to 83)</td>
<td>57 (54 to 61)</td>
<td>56 (51 to 61)</td>
<td>-0.28 (-0.36 to -0.2)</td>
<td>-0.02 (-0.11 to 0.08)</td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>3,125 (2,892 to 3,409)</td>
<td>2,738 (2,529 to 3,066)</td>
<td>3,076 (2,813 to 3,370)</td>
<td>-0.01 (-0.12 to -0.1)</td>
<td>0.12 (0.02 to 0.25)</td>
<td>72 (67 to 79)</td>
<td>54 (50 to 60)</td>
<td>51 (47 to 57)</td>
<td>-0.29 (-0.36 to -0.21)</td>
<td>-0.06 (-0.14 to 0.05)</td>
<td></td>
</tr>
<tr>
<td>Maine</td>
<td>942 (882 to 1,006)</td>
<td>770 (715 to 823)</td>
<td>846 (760 to 932)</td>
<td>-1 (-2 to 0)</td>
<td>1 (-0.2 to 0.22)</td>
<td>65 (61 to 69)</td>
<td>42 (39 to 44)</td>
<td>39 (35 to 43)</td>
<td>-0.4 (-0.47 to -0.33)</td>
<td>-0.06 (-0.16 to 0.04)</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>3,518 (3,241 to 3,872)</td>
<td>2,562 (2,370 to 2,801)</td>
<td>2,664 (2,419 to 2,939)</td>
<td>-0.24 (-0.32 to -0.14)</td>
<td>0.04 (-0.06 to 0.16)</td>
<td>70 (65 to 77)</td>
<td>39 (36 to 42)</td>
<td>34 (30 to 37)</td>
<td>-0.52 (-0.57 to -0.46)</td>
<td>-0.13 (-0.22 to -0.04)</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>4,740 (4,418 to 5,081)</td>
<td>3,215 (3,011 to 3,427)</td>
<td>3,349 (3,000 to 3,694)</td>
<td>-0.29 (-0.37 to -0.21)</td>
<td>0.04 (-0.06 to 0.15)</td>
<td>66 (62 to 71)</td>
<td>38 (35 to 40)</td>
<td>34 (30 to 38)</td>
<td>-0.48 (-0.55 to -0.42)</td>
<td>-0.09 (-0.18 to 0.01)</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td>7,187 (6,688 to 7,730)</td>
<td>5,258 (4,943 to 5,613)</td>
<td>5,700 (5,251 to 6,208)</td>
<td>-.21 (-.28 to -.11)</td>
<td>.09 (-.02 to .2)</td>
<td>71 (66 to 77)</td>
<td>42 (40 to 45)</td>
<td>41 (37 to 44)</td>
<td>-.43 (-.49 to -.36)</td>
<td>-.04 (-.12 to .07)</td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>2,915 (2,727 to 3,099)</td>
<td>2,473 (2,295 to 2,652)</td>
<td>2,806 (2,500 to 3,110)</td>
<td>-.04 (-.15 to .08)</td>
<td>.14 (.02 to .26)</td>
<td>59 (55 to 63)</td>
<td>38 (35 to 41)</td>
<td>36 (32 to 40)</td>
<td>-.38 (-.46 to -.3)</td>
<td>-.05 (-.15 to .05)</td>
<td></td>
</tr>
<tr>
<td>Mississippi</td>
<td>2,386 (2,217 to 2,603)</td>
<td>2,384 (2,199 to 2,575)</td>
<td>2,629 (2,327 to 2,973)</td>
<td>.1 (-.04 to .26)</td>
<td>.1 (-.03 to .25)</td>
<td>86 (80 to 94)</td>
<td>70 (65 to 76)</td>
<td>68 (60 to 77)</td>
<td>-.21 (-.31 to -.1)</td>
<td>-.03 (-.16 to .09)</td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>4,056 (3,810 to 4,309)</td>
<td>3,383 (3,187 to 3,596)</td>
<td>3,770 (3,455 to 4,107)</td>
<td>-.07 (-.16 to .04)</td>
<td>.12 (.01 to .24)</td>
<td>67 (63 to 71)</td>
<td>46 (43 to 49)</td>
<td>45 (41 to 48)</td>
<td>-.33 (-.4 to .26)</td>
<td>-.03 (-.12 to .08)</td>
<td></td>
</tr>
<tr>
<td>Montana</td>
<td>823 (764 to 886)</td>
<td>744 (689 to 797)</td>
<td>831 (728 to 947)</td>
<td>.01 (-.12 to .16)</td>
<td>.12 (-.02 to .28)</td>
<td>89 (82 to 95)</td>
<td>58 (54 to 63)</td>
<td>54 (47 to 62)</td>
<td>-.39 (-.47 to -.29)</td>
<td>-.07 (-.19 to .06)</td>
<td></td>
</tr>
<tr>
<td>Nebraska</td>
<td>1,431 (1,346 to 1,524)</td>
<td>1,122 (1,050 to 1,190)</td>
<td>1,227 (1,112 to 1,350)</td>
<td>-.14 (-.23 to -.04)</td>
<td>.09 (-.01 to .21)</td>
<td>76 (71 to 81)</td>
<td>50 (46 to 53)</td>
<td>48 (43 to 52)</td>
<td>-.37 (-.44 to -.3)</td>
<td>-.04 (-.14 to .06)</td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>1,124 (1,021 to 1,239)</td>
<td>1,548 (1,425 to 1,715)</td>
<td>1,800 (1,607 to 2,015)</td>
<td>.6 (.41 to .81)</td>
<td>.16 (.03 to .31)</td>
<td>90 (82 to 99)</td>
<td>55 (51 to 60)</td>
<td>47 (42 to 52)</td>
<td>-.48 (-.54 to -.41)</td>
<td>-.14 (-.24 to -.04)</td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>756 (708 to 808)</td>
<td>623 (578 to 667)</td>
<td>733 (659 to 812)</td>
<td>-.03 (-.14 to .09)</td>
<td>.18 (.06 to .31)</td>
<td>64 (60 to 69)</td>
<td>38 (35 to 40)</td>
<td>36 (32 to 41)</td>
<td>-.43 (-.5 to -.36)</td>
<td>-.03 (-.13 to .08)</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>7,250 (6,734 to 7,800)</td>
<td>4,373 (4,103 to 4,647)</td>
<td>4,420 (3,983 to 4,887)</td>
<td>-.39 (-.46 to -.31)</td>
<td>.01 (-.09 to .13)</td>
<td>79 (73 to 85)</td>
<td>40 (37 to 42)</td>
<td>35 (32 to 39)</td>
<td>-.55 (-.61 to -.49)</td>
<td>-.11 (-.2 to -.01)</td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>1,312 (1,217 to 1,418)</td>
<td>1,233 (1,158 to 1,319)</td>
<td>1,409 (1,249 to 1,592)</td>
<td>.08 (-.07 to .24)</td>
<td>.14 (0 to .31)</td>
<td>86 (79 to 93)</td>
<td>53 (49 to 56)</td>
<td>51 (45 to 57)</td>
<td>-.41 (-.49 to -.32)</td>
<td>-.04 (-.16 to .1)</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>14,535 (13,475 to 15,641)</td>
<td>7,787 (7,326 to 8,295)</td>
<td>7,908 (7,038 to 8,856)</td>
<td>-.46 (-.53 to -.37)</td>
<td>.02 (-.1 to .14)</td>
<td>70 (65 to 75)</td>
<td>32 (30 to 34)</td>
<td>29 (26 to 33)</td>
<td>-.58 (-.64 to -.52)</td>
<td>-.1 (-.2 to .02)</td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>4,817 (4,460 to 5,181)</td>
<td>4,530 (4,267 to 4,799)</td>
<td>5,352 (4,918 to 5,815)</td>
<td>.11 (-.01 to .24)</td>
<td>.18 (.08 to .3)</td>
<td>66 (61 to 71)</td>
<td>42 (40 to 45)</td>
<td>39 (36 to 43)</td>
<td>-.41 (-.47 to -.34)</td>
<td>-.07 (-.16 to .02)</td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>452 (421 to 486)</td>
<td>344 (321 to 367)</td>
<td>380 (336 to 428)</td>
<td>-.16 (-.26 to -.05)</td>
<td>.11 (-.02 to .24)</td>
<td>59 (55 to 64)</td>
<td>39 (36 to 42)</td>
<td>38 (33 to 43)</td>
<td>-.35 (-.43 to -.26)</td>
<td>-.02 (-.14 to .1)</td>
<td></td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. JAMA Cardiology.
<table>
<thead>
<tr>
<th>State</th>
<th>≥18 (%)</th>
<th>≥50 (%)</th>
<th>≥70 (%)</th>
<th>≥85 (%)</th>
<th>≥90 (%)</th>
<th>≥95 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>9,130 (8,498 to 9,729)</td>
<td>6,289 (5,926 to 6,705)</td>
<td>6,725 (6,185 to 7,300)</td>
<td>-0.26 (-0.34 to -0.18)</td>
<td>0.07 (-0.03 to 0.18)</td>
<td>73 (68 to 78)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>2,403 (2,262 to 2,558)</td>
<td>2,367 (2,226 to 2,518)</td>
<td>2,631 (2,415 to 2,857)</td>
<td>0.1 (-0.01 to 0.21)</td>
<td>0.11 (0.02 to 0.22)</td>
<td>66 (62 to 70)</td>
</tr>
<tr>
<td>Oregon</td>
<td>2,403 (2,250 to 2,569)</td>
<td>2,148 (2,015 to 2,289)</td>
<td>2,421 (2,184 to 2,652)</td>
<td>0.01 (-1.1 to 0.13)</td>
<td>0.13 (0.02 to 0.24)</td>
<td>71 (66 to 76)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>12,911 (12,093 to 13,750)</td>
<td>7,930 (7,488 to 8,377)</td>
<td>8,036 (7,405 to 8,736)</td>
<td>-0.38 (-0.44 to -0.31)</td>
<td>0.01 (-0.07 to 0.1)</td>
<td>85 (80 to 91)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>693 (641 to 746)</td>
<td>487 (449 to 525)</td>
<td>486 (424 to 556)</td>
<td>-0.3 (-0.39 to -0.19)</td>
<td>0 (-0.12 to 0.14)</td>
<td>56 (52 to 60)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>2,739 (2,524 to 2,970)</td>
<td>2,788 (2,605 to 2,988)</td>
<td>3,359 (3,031 to 3,755)</td>
<td>0.23 (0.06 to 0.42)</td>
<td>0.21 (0.06 to 0.37)</td>
<td>75 (69 to 81)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>524 (487 to 561)</td>
<td>419 (389 to 449)</td>
<td>484 (426 to 545)</td>
<td>-0.08 (-0.2 to 0.06)</td>
<td>0.16 (0.02 to 0.3)</td>
<td>62 (58 to 67)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>3,420 (3,190 to 3,655)</td>
<td>3,048 (2,844 to 3,241)</td>
<td>3,615 (3,286 to 3,898)</td>
<td>0.06 (-0.06 to 0.17)</td>
<td>0.19 (0.07 to 0.3)</td>
<td>62 (58 to 66)</td>
</tr>
<tr>
<td>Texas</td>
<td>10,445 (9,741 to 11,205)</td>
<td>10,119 (9,521 to 10,773)</td>
<td>12,481 (11,455 to 13,649)</td>
<td>0.2 (0.07 to 0.34)</td>
<td>0.23 (0.11 to 0.36)</td>
<td>63 (59 to 68)</td>
</tr>
<tr>
<td>Utah</td>
<td>1,720 (1,603 to 1,846)</td>
<td>1,699 (1,597 to 1,815)</td>
<td>2,109 (1,927 to 2,314)</td>
<td>0.23 (0.1 to 0.36)</td>
<td>0.24 (0.12 to 0.37)</td>
<td>118 (110 to 126)</td>
</tr>
<tr>
<td>Vermont</td>
<td>418 (387 to 447)</td>
<td>324 (302 to 346)</td>
<td>359 (324 to 394)</td>
<td>-0.14 (-0.24 to -0.04)</td>
<td>0.11 (-0.01 to 0.23)</td>
<td>68 (63 to 73)</td>
</tr>
<tr>
<td>Virginia</td>
<td>4,117 (3,873 to 4,411)</td>
<td>3,734 (3,525 to 3,944)</td>
<td>4,161 (3,776 to 4,570)</td>
<td>0.01 (-0.14 to 0.14)</td>
<td>0.12 (0.01 to 0.23)</td>
<td>65 (61 to 69)</td>
</tr>
<tr>
<td>Washington</td>
<td>3,504 (3,269 to 3,748)</td>
<td>2,812 (2,652 to 2,987)</td>
<td>3,252 (2,966 to 3,565)</td>
<td>-0.07 (-0.17 to 0.05)</td>
<td>0.16 (0.04 to 0.28)</td>
<td>67 (62 to 71)</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
<table>
<thead>
<tr>
<th>State</th>
<th>Cases 1</th>
<th>Cases 2</th>
<th>Cases 3</th>
<th>Cases 4</th>
<th>Cases 5</th>
<th>Cases 6</th>
<th>Cases 7</th>
<th>Cases 8</th>
<th>Cases 9</th>
<th>Cases 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Virginia</td>
<td>1,763 (1,648 to 1,886)</td>
<td>1,402 (1,311 to 1,498)</td>
<td>1,521 (1,376 to 1,670)</td>
<td>-.14 (-.24 to -.03)</td>
<td>.09 (-.02 to .2)</td>
<td>78 (73 to 84)</td>
<td>56 (52 to 60)</td>
<td>57 (51 to 62)</td>
<td>-.28 (-.36 to -.19)</td>
<td>.01 (-.08 to .12)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>3,502 (3,285 to 3,722)</td>
<td>2,915 (2,747 to 3,085)</td>
<td>3,208 (2,935 to 3,487)</td>
<td>-.08 (-.17 to .02)</td>
<td>.1 (.01 to .21)</td>
<td>61 (58 to 65)</td>
<td>40 (38 to 43)</td>
<td>38 (35 to 42)</td>
<td>-.37 (-.43 to -.3)</td>
<td>-.04 (-.13 to .05)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>418 (387 to 449)</td>
<td>421 (393 to 451)</td>
<td>463 (406 to 527)</td>
<td>.11 (-.04 to .28)</td>
<td>.1 (-.04 to .26)</td>
<td>93 (86 to 100)</td>
<td>66 (62 to 71)</td>
<td>60 (53 to 69)</td>
<td>-.35 (-.44 to -.25)</td>
<td>-.09 (-.21 to .04)</td>
</tr>
</tbody>
</table>
eTable 2. Age-standardized heart failure prevalence per 100 000 persons for 2016

<table>
<thead>
<tr>
<th>Location</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>1001 (947 to 1060)</td>
<td>1226 (1163 to 1288)</td>
</tr>
<tr>
<td>Alaska</td>
<td>688 (608 to 783)</td>
<td>894 (792 to 1006)</td>
</tr>
<tr>
<td>Arizona</td>
<td>802 (757 to 854)</td>
<td>994 (947 to 1045)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>951 (873 to 1031)</td>
<td>1152 (1090 to 1215)</td>
</tr>
<tr>
<td>California</td>
<td>826 (795 to 852)</td>
<td>1063 (1027 to 1097)</td>
</tr>
<tr>
<td>Colorado</td>
<td>896 (843 to 950)</td>
<td>1052 (997 to 1106)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>896 (854 to 940)</td>
<td>1180 (1136 to 1224)</td>
</tr>
<tr>
<td>Delaware</td>
<td>854 (803 to 912)</td>
<td>1074 (1014 to 1140)</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>868 (768 to 984)</td>
<td>1001 (881 to 1124)</td>
</tr>
<tr>
<td>Florida</td>
<td>921 (892 to 972)</td>
<td>1156 (1128 to 1190)</td>
</tr>
<tr>
<td>Georgia</td>
<td>914 (882 to 944)</td>
<td>1107 (1063 to 1160)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>769 (697 to 853)</td>
<td>1164 (1071 to 1262)</td>
</tr>
<tr>
<td>Idaho</td>
<td>848 (792 to 907)</td>
<td>1013 (949 to 1082)</td>
</tr>
<tr>
<td>Illinois</td>
<td>887 (845 to 928)</td>
<td>1101 (1052 to 1156)</td>
</tr>
<tr>
<td>Indiana</td>
<td>1183 (1129 to 1230)</td>
<td>1458 (1402 to 1504)</td>
</tr>
<tr>
<td>Iowa</td>
<td>695 (642 to 778)</td>
<td>907 (837 to 1003)</td>
</tr>
<tr>
<td>Kansas</td>
<td>849 (795 to 910)</td>
<td>980 (905 to 1061)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1183 (1121 to 1237)</td>
<td>1384 (1318 to 1451)</td>
</tr>
<tr>
<td>Louisiana</td>
<td>998 (930 to 1066)</td>
<td>1203 (1134 to 1268)</td>
</tr>
<tr>
<td>Maine</td>
<td>758 (702 to 828)</td>
<td>1043 (981 to 1109)</td>
</tr>
<tr>
<td>Maryland</td>
<td>1005 (954 to 1055)</td>
<td>1242 (1179 to 1309)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>805 (747 to 867)</td>
<td>1037 (976 to 1125)</td>
</tr>
<tr>
<td>Michigan</td>
<td>1182 (1130 to 1221)</td>
<td>1398 (1359 to 1427)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>672 (615 to 741)</td>
<td>854 (785 to 922)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>963 (898 to 1033)</td>
<td>1188 (1111 to 1269)</td>
</tr>
<tr>
<td>Missouri</td>
<td>1021 (979 to 1059)</td>
<td>1290 (1233 to 1338)</td>
</tr>
<tr>
<td>Montana</td>
<td>881 (826 to 942)</td>
<td>1099 (1026 to 1173)</td>
</tr>
<tr>
<td>State</td>
<td>Male (95% CI)</td>
<td>Female (95% CI)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Nebraska</td>
<td>844 (772 to 923)</td>
<td>1083 (1001 to 1180)</td>
</tr>
<tr>
<td>Nevada</td>
<td>946 (890 to 1003)</td>
<td>1107 (1043 to 1178)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>729 (676 to 807)</td>
<td>1009 (923 to 1111)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>987 (947 to 1028)</td>
<td>1310 (1259 to 1357)</td>
</tr>
<tr>
<td>New Mexico</td>
<td>914 (870 to 961)</td>
<td>1102 (1035 to 1195)</td>
</tr>
<tr>
<td>New York</td>
<td>1151 (1106 to 1190)</td>
<td>1515 (1469 to 1545)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>802 (760 to 849)</td>
<td>969 (920 to 1031)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>817 (725 to 925)</td>
<td>922 (816 to 1051)</td>
</tr>
<tr>
<td>Ohio</td>
<td>1097 (1046 to 1140)</td>
<td>1367 (1319 to 1406)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1159 (1102 to 1209)</td>
<td>1428 (1365 to 1477)</td>
</tr>
<tr>
<td>Oregon</td>
<td>773 (720 to 831)</td>
<td>949 (882 to 1027)</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>923 (877 to 968)</td>
<td>1205 (1141 to 1271)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>858 (786 to 938)</td>
<td>1124 (1026 to 1227)</td>
</tr>
<tr>
<td>South Carolina</td>
<td>957 (907 to 1009)</td>
<td>1156 (1080 to 1241)</td>
</tr>
<tr>
<td>South Dakota</td>
<td>858 (772 to 953)</td>
<td>946 (856 to 1057)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>1035 (977 to 1086)</td>
<td>1272 (1217 to 1322)</td>
</tr>
<tr>
<td>Texas</td>
<td>1057 (1017 to 1090)</td>
<td>1306 (1261 to 1343)</td>
</tr>
<tr>
<td>Utah</td>
<td>965 (899 to 1032)</td>
<td>1100 (1030 to 1180)</td>
</tr>
<tr>
<td>Vermont</td>
<td>703 (624 to 800)</td>
<td>869 (777 to 988)</td>
</tr>
<tr>
<td>Virginia</td>
<td>867 (828 to 905)</td>
<td>1040 (983 to 1113)</td>
</tr>
<tr>
<td>Washington</td>
<td>720 (679 to 766)</td>
<td>911 (851 to 975)</td>
</tr>
<tr>
<td>West Virginia</td>
<td>1151 (1075 to 1219)</td>
<td>1314 (1250 to 1379)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>808 (769 to 848)</td>
<td>1009 (946 to 1086)</td>
</tr>
<tr>
<td>Wyoming</td>
<td>833 (755 to 925)</td>
<td>1042 (953 to 1148)</td>
</tr>
</tbody>
</table>
eFigure 1. US State rankings for age-standardized cardiovascular disease disability-adjusted life-year rates per 100,000 persons for both sexes combined in 2016

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic heart disease</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other cardiomyopathy</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation and flutter</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocarditis</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcoholic cardiomyopathy</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocarditis</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
eFigure 2. Proportion of cardiovascular disease disability-adjusted life-years due to years lived with disability in 2016
eFigure 3. Leading level 2 cardiovascular risk factors for both sexes for Minnesota and Mississippi

A. Minnesota

<table>
<thead>
<tr>
<th>Leading risks 1990</th>
<th>Leading risks 2006</th>
<th>Mean % change number of DALYs 1990-2006</th>
<th>Mean % change all-age DALY rate 1990-2006</th>
<th>Mean % change age-standardised DALY rate 1990-2006</th>
<th>Leading risks 2016</th>
<th>Mean % change number of DALYs 2006-2016</th>
<th>Mean % change all-age DALY rate 2006-2016</th>
<th>Mean % change age-standardised DALY rate 2006-2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dietary risks</td>
<td>1 Dietary risks</td>
<td>-23.8%</td>
<td>-23.8%</td>
<td>-23.8%</td>
<td>1 Dietary risks</td>
<td>7.3%</td>
<td>0.4%</td>
<td>-11.9%</td>
</tr>
<tr>
<td>2 High blood pressure</td>
<td>2 High blood pressure</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>2 High blood pressure</td>
<td>5.9%</td>
<td>-1.4%</td>
<td>-13.9%</td>
</tr>
<tr>
<td>3 High total cholesterol</td>
<td>3 High total cholesterol</td>
<td>-23.4%</td>
<td>-23.4%</td>
<td>-23.4%</td>
<td>3 High body-mass index</td>
<td>12.1%</td>
<td>4.9%</td>
<td>-7.1%</td>
</tr>
<tr>
<td>4 High body-mass index</td>
<td>4 High body-mass index</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>3 High body-mass index</td>
<td>12.1%</td>
<td>4.9%</td>
<td>-7.1%</td>
</tr>
<tr>
<td>5 Tobacco</td>
<td>5 Tobacco</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>3 High body-mass index</td>
<td>12.1%</td>
<td>4.9%</td>
<td>-7.1%</td>
</tr>
<tr>
<td>6 High fasting plasma glucose</td>
<td>6 High fasting plasma glucose</td>
<td>-23.4%</td>
<td>-23.4%</td>
<td>-23.4%</td>
<td>3 High fasting plasma glucose</td>
<td>6.6%</td>
<td>-1.2%</td>
<td>-14.6%</td>
</tr>
<tr>
<td>7 Low physical activity</td>
<td>7 Low physical activity</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>3 Low physical activity</td>
<td>0.7%</td>
<td>-0.6%</td>
<td>-11.3%</td>
</tr>
<tr>
<td>8 Impaired kidney function</td>
<td>8 Impaired kidney function</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>3 Impaired kidney function</td>
<td>7.3%</td>
<td>0.6%</td>
<td>-11.3%</td>
</tr>
<tr>
<td>9 Air pollution</td>
<td>9 Air pollution</td>
<td>-23.4%</td>
<td>-23.4%</td>
<td>-23.4%</td>
<td>3 Air pollution</td>
<td>0.9%</td>
<td>-0.4%</td>
<td>-16.3%</td>
</tr>
<tr>
<td>10 Other environmental</td>
<td>10 Other environmental</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>-83.2%</td>
<td>3 Other environmental</td>
<td>1.7%</td>
<td>-0.6%</td>
<td>-14.7%</td>
</tr>
</tbody>
</table>

Legend:
- Environmental
- Renal
- Metabolic
B. Mississippi

![Leading level 2 cardiovascular risk factors of Mississippi, both sexes](image)

<table>
<thead>
<tr>
<th>Leading risks 1980</th>
<th>Leading risks 2006</th>
<th>Mean % change number of DALYs 1980-2006</th>
<th>Mean % change all-age DALY rate 1980-2006</th>
<th>Mean % change age-standardised DALY rate 1980-2006</th>
<th>Leading risks 2016</th>
<th>Mean % change number of DALYs 2008-2016</th>
<th>Mean % change all-age DALY rate 2008-2016</th>
<th>Mean % change age-standardised DALY rate 2008-2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dietary risks</td>
<td>1 Dietary risks</td>
<td>-9.9%</td>
<td>-19.7%</td>
<td>-27.6%</td>
<td>1 Dietary risks</td>
<td>3.4%</td>
<td>0.5%</td>
<td>-9.6%</td>
</tr>
<tr>
<td>2 High blood pressure</td>
<td>2 High blood pressure</td>
<td>-11.9%</td>
<td>-20.6%</td>
<td>-28.0%</td>
<td>2 High blood pressure</td>
<td>-3.7%</td>
<td>0.6%</td>
<td>-19.3%</td>
</tr>
<tr>
<td>3 High total cholesterol</td>
<td>3 High body-mass index</td>
<td>33.3%</td>
<td>18.9%</td>
<td>4.6%</td>
<td>3 High body-mass index</td>
<td>5.0%</td>
<td>2.1%</td>
<td>6.9%</td>
</tr>
<tr>
<td>4 High body-mass index</td>
<td>4 High total cholesterol</td>
<td>-12.6%</td>
<td>-22.3%</td>
<td>-31.8%</td>
<td>4 High total cholesterol</td>
<td>-2.0%</td>
<td>-5.3%</td>
<td>-12.9%</td>
</tr>
<tr>
<td>5 Tobacco</td>
<td>5 Tobacco</td>
<td>-8.8%</td>
<td>-13.7%</td>
<td>-29.0%</td>
<td>5 Tobacco</td>
<td>6.7%</td>
<td>3.7%</td>
<td>-10.4%</td>
</tr>
<tr>
<td>6 High fasting plasma glucose</td>
<td>6 High fasting plasma glucose</td>
<td>27.6%</td>
<td>22.7%</td>
<td>12.9%</td>
<td>6 Tobacco</td>
<td>-11.9%</td>
<td>-14.4%</td>
<td>-29.9%</td>
</tr>
<tr>
<td>7 Air pollution</td>
<td>7 Low physical activity</td>
<td>-12.9%</td>
<td>-22.4%</td>
<td>-30.5%</td>
<td>7 Impaired kidney function</td>
<td>7.1%</td>
<td>4.1%</td>
<td>6.1%</td>
</tr>
<tr>
<td>8 Low physical activity</td>
<td>8 Air pollution</td>
<td>-12.9%</td>
<td>-22.4%</td>
<td>-30.5%</td>
<td>8 Low physical activity</td>
<td>-3.1%</td>
<td>-5.6%</td>
<td>-17.1%</td>
</tr>
<tr>
<td>9 Impaired kidney function</td>
<td>9 Air pollution</td>
<td>-8.8%</td>
<td>-18.7%</td>
<td>-25.1%</td>
<td>9 Alcohol & drug use</td>
<td>-8.5%</td>
<td>-11.1%</td>
<td>-19.3%</td>
</tr>
<tr>
<td>10 Alcohol & drug use</td>
<td>10 Alcohol & drug use</td>
<td>57.3%</td>
<td>40.2%</td>
<td>29.3%</td>
<td>11 Occupational risks</td>
<td>14.5%</td>
<td>11.3%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

© 2018 Global Burden of Cardiovascular Diseases Collaboration. *JAMA Cardiology.*
eFigure 4. US State drivers of change in cardiovascular disease from 1990 to 2016
eFigure 5. Age-standardized percentage change in disability-adjusted life-year rate between 2010 and 2016 for all cardiovascular diseases in men and women

A. Men

B. Women